Предчувствия и свершения. Книга 3. Единство
Шрифт:
В процессе расширения плотность и температура быстро падали. В некоторый момент температура опустилась настолько, что случайно столкнувшиеся нейтрон и протон уже могли удержаться вместе, образуя дейтон — ядро атома дейтерия. Затем, путем последовательных присоединений нейтронов и протонов, возникли ядра всех известных элементов.
Альфер и Герман установили, что в результате таких последовательных захватов можно прийти к наблюдаемому ныне соотношению количества различных легких элементов. Но необходима жесткая предпосылка: первоначальное отношение числа фотонов к числу ядерных частиц должно было быть порядка миллиарда. Учитывая это и воспользовавшись определенной в то время астрофизиками плотностью ядерных частиц в космическом пространстве,
Это предсказание прошло совершенно незамеченным.
Вскоре выяснилось, что вычисления Альфера, Германа и Гамова были не совсем правильными. В 1950 году Е. Хаяши показал, что следует отказаться от предположения о том, что в начале эволюции Вселенная содержала только нейтроны и что они распадались по законам радиоактивного распада. Более вероятной казалась первоначальная гипотеза Гамова о том, что в первые мгновения Большого взрыва существовала плотная горячая плазма. Пришлось принять, что эта плазма содержала нейтроны и протоны, электроны и позитроны, нейтрино и антинейтрино. В 1953 году Альфер, Герман и Дж. Фоллин (младший) пересчитали модель в соответствии с уточнением Хаяши. Они вновь пришли к соотношению содержания гелия и водорода, совпадавшему с наблюдениями астрономов (одно ядро гелия на каждые десять протонов). Но за дальнейшим синтезом химических элементов они не проследили. Возможно, их остановило указание Э. Ферми и А. Туркевича, обративших внимание на отсутствие в природе ядер с пятью и с восемью ядерными частицами. Из этого следовало, что такие ядра очень неустойчивы. Поэтому невозможно ожидать, что в горячей плазме простым присоединением нейтронов или протонов рождаются ядра более массивные, чем гипотетическое ядро бериллия-8.
В 1952 году Э. Сольпитер показал, как, несмотря на отсутствие ядра с пятью ядерными частицами, путем последовательного присоединения нейтронов и протонов в не слишком горячей плазме могут возникать не только ядра изотопов водорода и гелия, но и ядра изотопов лития.
Современная теория нуклеосинтеза в ранней Вселенной, приводящая на определенной стадии развития после Большого взрыва к возникновению легких ядер, была создана лишь в 1964 году Я. Б. Зельдовичем и независимо Ф. Хойлом и Р. Тайгером, а также П. Пиблсом.
После этого стало общепризнанным, что все химические элементы, следующие за литием, образовались в недрах звезд и при взрывах сверхновых. К этому нам еще предстоит возвратиться.
Прежде чем расстаться с моделью Альфера, Германа и Гамова, нужно еще раз обратить внимание на то, что ее авторы в то время находились под влиянием общепринятой тогда величины постоянной Хаббла. Но величина постоянной Хаббла характеризует скорость расширения Вселенной, а значит, и время, прошедшее от Большого взрыва до наших дней.
В соответствии с принятым в сороковых годах значением постоянной Хаббла возраст Вселенной был оценен в границах от 1 до 4 миллиардов лет, что сравнимо с возрастом Земли, определенным тогда различными достоверными методами в пределах 4–6 миллиардов лет. Именно это заставило Альфера, Германа и Гамова и в последнем варианте их теории счесть, что все химические элементы были синтезированы в ходе Большого взрыва до образования звезд и планет.
Лишь в семидесятых годах величина постоянной Хаббла была уточнена и было принято ее современное значение а возраст Вселенной оказался где-то между 13 и 20 миллиардами лет. Чаще всего говорят о 15 миллиардах лет. Именно это позволило пересмотреть теорию нуклеосинтеза и разработать более подробный сценарий образования звезд, включающий первый этап, на котором рождались и гибли звезды первого поколения, состоявшие из водорода и гелия. Лишь позже из элементов, синтезированных в ходе эволюции звезд первого поколения, возникли знакомые нам звезды второго поколения. К этому мы еще вернемся.
Первоначальный вариант теории расширяющейся Вселенной, созданный Фридманом, содержал лишь один результат, поддающийся проверке опытом. Этим результатом был сам процесс расширения. Безупречность теории была подтверждена авторитетом Эйнштейна. На вопрос о том, имеет ли это расширение реальный смысл, ответил Хаббл: да, она расширяется, как предсказал Фридман.
Модель Большого взрыва тоже привела к ряду результатов, поддающихся опытной проверке. Среди них — процесс образования ядер легких элементов из протонов и нейтронов. Это произошло после того, как расширение привело к понижению температуры ниже уровня, при котором тепловые соударения с другими протонами и нейтронами и воздействие излучения уже не могут разрушить образовавшиеся ядра. При этом модель позволяет проследить за ходом образования различных ядер, базируясь на результатах физики элементарных частиц и ядерной физики. Таким путем была вычислена распространенность легких ядер.
Несмотря на то что модель Гамова и его соавторов основывалась на неверном значении постоянной Хаббла, они смогли вычислить, что в современной Вселенной большая часть вещества существует в виде водорода (70 %), а меньшая часть в виде гелия (30 %). Все остальные элементы в сумме не составляют и нескольких процентов вещества Вселенной, так что их количество укладывается в пределы тех ошибок, с которыми вычислено количество водорода и гелия.
Это «предсказание» удивительно хорошо совпало с наблюдением астрофизиков, что сильно укрепило уверенность в правильности теории Большого взрыва, несмотря на первоначальную неясность с образованием тяжелых ядер.
Уточненная модель Большого взрыва немного изменила значение температуры электромагнитного излучения, оставшегося от Большого взрыва.
Расчеты показали, что к нашему времени оно должно охладиться до температуры порядка 10К (вместо первоначального результата 5К).
Следует помнить, что между 1948 и 1953 годом никто не помышлял о том, что можно зафиксировать существование излучения, обладающего столь низкой температурой. Эта часть работы, это предсказание не привлекло внимания ученых и оказалось забытым. Но в нем таился зародыш одной из самых впечатляющих сенсаций науки наших дней.
В 1963 году группа теоретиков, работавших в Принстоне во главе с Р. Дикке, снова заинтересовалась теорией Большого взрыва. За прошедшее десятилетие теория элементарных частиц пережила период бурного развития как в области фундаментальных моделей, так и по методам расчетов и полученным результатам. Значительный прогресс пережила и радиоастрономия. Были построены крупные малошумящие антенны для приема радиоволн сантиметрового диапазона, приходящих из космоса. Одновременно еще более молодая квантовая электроника позволила создать принципиально новые квантовые усилители радиоволн, основанные на применении открытого Е. К. Завойским парамагнитного резонанса. Радиоприемники с такими усилителями могли легко зафиксировать радиоизлучение, интенсивность которого была бы эквивалентна шумам сопротивления, нагретого лишь до нескольких единиц градусов Кельвина.
Один из сотрудников Дикке, П. Пиблс, вновь провел расчеты протекания начальной стадии эволюции Вселенной, следуя стандартной модели Большого взрыва, но с учетом новейших достижений физики элементарных частиц. Расчет подтвердил, что со всех направлений из удаленных областей Вселенной к Земле приходит равновесное радиоизлучение, максимум интенсивности которого после новых вычислений оказался близким к 7К. Основной отличительной чертой этого излучения является независимость его интенсивности от направления в пространстве и его спектр, являющийся характерным шумовым спектром равновесного теплового излучения. Лабораторный жаргон присвоил этому излучению наименование «реликтовое излучение», что подчеркивает его происхождение. Ведь это действительно реликт — остаток давно минувших времен и событий. Наименование сохранилось и вошло в международный словарь науки.