Чтение онлайн

на главную - закладки

Жанры

Превращения гиперболоида инженера Гарина
Шрифт:

Но и этого еще недостаточно для создания стандарта частоты на газах. Ведь хаотическое тепловое движение атомов приводит к уширению спектральных линий даже без столкновений, просто вследствие эффекта Допплера. С этим эффектом мы сталкиваемся слишком часто, чтобы долго на нем останавливаться. Эффект Допплера встречается и в обыденной жизни. Стоя на платформе, мимо которой проезжает гудящий поезд, мы слышим внезапное изменение тона гудка, когда приближающийся поезд, минуя нас, начинает удаляться. Так же должен был бы скачком изменяться и цвет его фонарей. Мы не замечаем этого только из-за малой величины изменения частоты света.

Но атомы газа движутся много быстрее, чем поезд, а радиоспектроскоп неизмеримо более чувствителен к изменению

частоты, чем глаз. Радиоспектроскоп отмечает, что при комнатной температуре спектральные линии отдельных атомов, летящих в противоположные стороны, отличаются между собой по частоте на несколько десятков тысяч герц. Атомы, образующие газ, имеют всевозможные направления движения и летят с различными скоростями. И спектроскоп фиксирует широкую спектральную линию, образовавшуюся из множества слившихся линий, занимающих сплошной участок спектра.

Казалось, невозможно получить в газе спектральные линии, более узкие, чем те, которые обусловлены допплеровским уширением. Ведь прекратить тепловое движение невозможно. Даже уменьшить его, понижая температуру, нельзя, не нарушив работы прибора.

Но Рэмси использовал в своем приборе тонкость, которая обычно ускользает от внимания при знакомстве с эффектом Допплера. Для того чтобы эффект Допплера развился в полной мере и проявил себя изменением частоты спектральной линии атома или любого другого источника, нужно, чтобы атом, перемещаясь, покрыл расстояние не меньшее, чем несколько длин волн соответствующей частоты. Нужно, чтобы атом побывал во всех участках волны — и на ее гребнях, и на склонах, и во впадинах. А еще лучше, чтобы он побывал во многих волнах. Обычно так и бывает. Но в приборе Рэмси атомы водорода летают внутри небольшой колбы. Размеры колбы не превышали нескольких сантиметров, а длина волны соответствующей спектральной линии водорода равна, как известно, 21 сантиметру. В этих условиях, с точки зрения волны, атомы как бы дрожат на месте. Поэтому они не могут ощутить волновой характер электромагнитного поля. Это значит, что эффект Допплера здесь не должен проявляться. Спектральная линия не будет уширяться. Точные расчеты убедили Рэмси в том, что эти наглядные рассуждения правильны и спектральная линия атомов водорода в его приборе останется очень узкой. Генератор должен работать, и частота его обязательно будет очень стабильной.

Опыты подтвердили расчеты. Генератор заработал. Правда, мощность его была ничтожна — миллионная часть от миллионной доли ватта. Это было примерно в сто раз меньше, чем мощность молекулярного генератора на аммиаке, но зато стабильность частоты нового генератора была примерно в сто раз лучшей, чем у его предшественника.

Теперь водородный генератор соревнуется за право быть новым эталоном частоты, новым эталоном единицы времени — секунды. И шансы его очень велики. Требуется лишь проверка временем.

Водородные генераторы работают также в Москве, в других городах нашей страны и в Невшателе, в Швейцарии.

В Невшателе Бонаноми, закончив работы по созданию квантовых часов, вернулся в свою обсерваторию. Правда, и здесь он не смог полностью отказаться от увлечения квантами. Он делит свое время между наблюдениями неба и работой в маленькой лаборатории, где, может быть, скоро родится новый прибор — стандарт частоты на пучке атомов таллия. Бонаноми знает, как нелегко создать таллиевые часы, но он надеется, что преодолеет трудности и сможет создать прибор, который превзойдет и водородный генератор и цезиевый эталон.

Профессор Бонаноми не прерывает связи с часовым институтом. Карташоф работает в нем теперь с новым молодым сотрудником Мену. Они регулярно проверяют часы обсерватории по своему цезиевому стандарту частоты, который заслужил репутацию одного из наиболее точных в мире. Они обмениваются радиосигналами с Эссеном в Англии, их сигналы принимают и в Праге, и в Москве, и во многих других городах.

В 1964 году в этой лаборатории был произведен замечательный опыт. В этом году в Лозанне происходила Международная выставка часов. Американская фирма Вариан послала на выставку два водородных генератора, частота которых перед отправкой в Европу была с точностью до 12-го знака определена при помощи цезиевого стандарта частоты Национального бюро стандартов США. Генераторы были разобраны, привезены в Европу и опять собраны. После закрытия выставки эти генераторы были вновь разобраны и перевезены в Невшатель.

Здесь их снова собрали. Карташоф, Мену и американские инженеры сравнили частоты путешествующих водородных генераторов и невшательского цезиевого стандарта частоты. Результат превзошел все ожидания. Измерения совпали с проведенными в США до 12-го знака! Точность в десять раз превзошла то, на что рассчитывали ученые. А рассчитывали они «только» на одиннадцатый знак. На большее они и не надеялись. Даже это было слишком смело. Результаты же совпали и в двенадцатом знаке. Так выяснилось, что квантовые стандарты частоты могут быть еще более усовершенствованы. Для этого необходимо доказать, что совпадение не было случайным.

ЗАКУТАЕМ АТОМЫ В ВАТУ

Итак, два главных конкурента на почетное звание чемпиона точности, простите, на возведение в ранг эталона частоты, или, что то же самое, эталона секунды, встретившись, обменялись взаимными комплиментами. Но спор между ними еще не решен.

А в это время набирал силы еще один претендент. Только год назад он скромно довольствовался второстепенной ролью. Но теперь он готовится расширить свои владения. Он прост, легок, дешев, не боится тряски, хотя и нуждается в предварительной калибровке по эталону. Работают в нем атомы щелочного металла рубидия, взаимодействующие с сантиметровыми радиоволнами.

Фактически это тоже радиоспектроскоп. Уже третий, встречающийся на нашем пути. Но это не газовый спектроскоп, с которым работали Басов и Прохоров, и не пучковый спектроскоп Раби. Его изобрели в 1949 году французские ученые А. Кастлер и И. Броссел. Они предложили новый метод радиоспектроскопии, который назвали методом двойного резонанса.

Ничто в жизни, в искусстве, в науке не проходит даром. Все оставляет на поверхности свой «культурный слой». По монетам, украшениям и домашней утвари, найденным археологами, судят об уровне знаний, образе жизни и привычках наших предков. По картинам и книгам предшественников учат следующие поколения. Каждый прибор, всякая плодотворная гипотеза, любая оправдавшая себя теория — это ступенька, по которой новое поколение ученых взойдет выше по дороге прогресса.

Ступенькой, с которой начали свое восхождение Кастлер и Броссел, возможно, послужило учение о комбинационном рассеянии света, открытом за двадцать лет до того Ландсбергом и Мандельштамом в кристаллах и Раманом и Кришнаном в жидкостях. Но вместо комбинации световых волн с акустическими они задумали воздействовать на вещество одновременно светом и радиоволнами.

Так, несколько иным способом, чем Раби, они хотели изучать поведение атомов во время резонанса их с радиоволной. Но они пошли дальше, усложнили опыт и углубили свое проникновение в суть явлений микромира. Уравнения квантовой механики открыли им еще один секрет: оказывается, в момент резонанса с радиоволной атомы особенно жадно поглощают свет. Свет как бы подбадривает их, накачивает в них новые силы для более полного и интенсивного общения с радиоволной. Недаром в научной литературе укрепился термин «оптическая накачка». Формулы же подсказали французским ученым, что новый метод избавит их от громоздких магнитов Штерна и Раби. Для того чтобы обнаружить спектральную линию, им достаточно наблюдать, как атомы поглощают свет. Как только радиоволна, испускаемая генератором, попадет в резонанс с атомами, поглощение ими света увеличится. Значит, по величине поглощения света можно судить о том, настроена ли радиоволна в резонанс с атомами.

Поделиться:
Популярные книги

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой