Превращения гиперболоида инженера Гарина
Шрифт:
Для генерации нужна обратная связь. Осуществить обратную связь можно различными путями. В оптике и в диапазоне наиболее коротких радиоволн легче всего осуществить обратную связь, помещая рабочее вещество внутрь резонатора.
Любой квантовый генератор содержит рабочее вещество, находящееся в резонаторе, и устройство для приведения рабочего вещества в активное состояние. Фотон, испущенный вдоль оси резонатора, вызовет лавину точно таких же фотонов. Излучение квантового генератора отличается большой монохроматичностью и направленностью. Это определяет разнообразные возможности его применения.
Профессор коротко рассказал о перспективах, открываемых созданием лазеров перед наукой и техникой. Единственное,
— Я надеюсь, — сказал профессор Таунс, — что килл-лазер (лазер-убийца) никогда не будет построен!
Эти слова вызвали бурный восторг присутствующих. Лекция очень понравилась слушателям своей лаконичностью и простотой. Таунс в нескольких словах как бы подвел итог достижениям новой, замечательной науки.
Поток вопросов, захлестнувший Таунса, был прерван только сообщением о том, что ректор университета уже ожидает гостя.
ЛАЗЕР РОЖДАЕТ ЛАЗЕР
После окончания приема началась научная часть визита Профессор Таунс знакомился с лабораториями физического факультета МГУ. Естественно, что особое внимание он уделил отделению радиофизики, возглавляемому одним из учеников Мандельштама и Папалекси, профессором Владимиром Васильевичем Мигулиным, тем самым, который еще совсем молодым ученым руководил первыми шагами начинающего Прохорова. Мигулин до сих пор сохраняет пристрастие к теории колебаний, особенно к параметрическим колебаниям, которые неожиданно тесно переплелись с квантовой электроникой. Однако основную тяжесть этих исследований нес на себе тогда совсем молодой профессор Рем Викторович Хохлов. (Впоследствии академик, ректор МГУ)
И гость особенно заинтересовался главным направлением исследований кафедры, руководимой Хохловым, — нелинейными оптическими явлениями. Так называются разнообразные эффекты, возникающие, когда свойства вещества зависят от интенсивности действующего на него света. Как и в области радио, нелинейные явления в оптике становятся существенными только при очень больших электромагнитных полях. В долазерную эру оптики имели дело лишь с крайне слабыми полями, и для наблюдения нелинейных явлений приходилось создавать очень чувствительную аппаратуру.
Обсуждая эту ситуацию, академик Вавилов, введший в науку термин «нелинейная оптика», писал: «Физики настолько свыклись с линейностью обыденной оптики, что до сих пор нет даже формального строгого математического аппарата для решения реальных „нелинейных“ оптических задач».
С появлением лазеров, особенно лазеров с управляемой добротностью резонатора, дающих гигантские импульсы света мощностью в миллиарды ватт, нелинейные явления приобретают большое, иногда решающее значение не только для физики, но и для технических применений. Кстати, именно Хохлов со своим сотрудником С. А. Ахмановым написали первую монографию в этой области, суммировав и значительно развив в ней и теорию и математический аппарат, который имел в виду Вавилов. Эта монография, хорошо известная за рубежом, несомненно, была одной из причин интереса Таунса к работам ее авторов.
В предыдущих абзацах мы уже несколько раз применили выражение «нелинейные явления». Иногда совершенно невозможно избежать научных терминов. Однако специальные термины, в том числе и научные, вовсе не засоряют язык. Наоборот, они делают его проще, яснее и позволяют достичь краткости. Одно-два слова заменяют целую фразу, а иногда и несколько фраз.
Представим себе, например, график движения поезда, идущего с постоянной скоростью. Изображая путь, пройденный им за какое-нибудь время, мы получим прямую линию. Опуская слово «прямая», физик говорит о «линейном» законе движения, имея в виду, что пройденный путь пропорционален времени.
В воздухе, стекле, воде, в большинстве известных сред путь, пройденный светом, пропорционален времени. Это значит, что скорость света в этих средах постоянна. Для большинства веществ это верно при всех достижимых интенсивностях света, даже для лучей оптических квантовых генераторов. Но есть небольшое количество кристаллов, в которых скорость света меняется в зависимости от его силы. Более того, эта зависимость изменяется, если меняется направление света по отношению к ребрам кристалла и его граням. Такой закон распространения света естественно назвать нелинейным. Иногда слово «нелинейный» относят к самому кристаллу, имея в виду, что закон распространения света в этом кристалле отличен от линейного.
В радиотехнике давно применяют нелинейные зависимости тока от напряжения, наблюдающиеся в радиолампах и полупроводниковых приборах для умножения частоты. Это значит, что, имея ламповый генератор какой-то определенной частоты, можно, не меняя ничего в генераторе, получить колебания с вдвое, или втрое, или даже вдесятеро большей частотой.
Естественно, что после создания оптических квантовых генераторов физики решили получить нечто подобное и в оптике. Ведь до сих пор мощные квантовые генераторы работают только на двух длинах волн — квантовые генераторы с ионами неодима дают инфракрасные волны длиной около одного микрона, и рубиновые генераторы с ионами хрома излучают красный свет длиной около 0,69 микрона. Между тем, удвоив частоту неодимового генератора, то есть уменьшив его волну вдвое — до 0,5 микрона, можно получить зеленый свет, а утроить его частоту — значит получить ультрафиолетовые лучи длиной в 0,33 микрона. И не какие-нибудь лучи, а почти идеальные! Лазер рождает лазер!
Аналогичный результат дает умножение частоты рубинового генератора.
Действительно, пропуская луч квантового генератора через специально выращенные кристаллы, Франкен и его сотрудники смогли зарегистрировать появление излучения удвоенной частоты. Однако коэффициент преобразования был очень мал. Лишь ничтожная доля энергии падающей волны превращалась в энергию волны удвоенной частоты.
Хохлов и его сотрудники глубоко проанализировали это явление и поняли, что причина лежит в различии скоростей обеих волн. В результате действия различных участков кристалла не складываются, а даже частично уничтожаются. Но уравнения подсказали Хохлову выход из положения. Оказывается, в кристалле можно найти направления, в которых падающая волна и волна с умноженной частотой бегут с такими скоростями, при которых все точки кристалла вдоль направления распространения волн действуют согласованно и результаты их действия складываются. При этом очень большая часть энергии падающей волны превращается в энергию волны с умноженной частотой. Так были созданы весьма эффективные оптические генераторы гармоник.
Нелинейные кристаллы могут служить и своеобразными оптическими микрофонами. При их помощи можно модулировать световые волны так же, как при помощи микрофонов модулируют радиоволны для передачи музыки или речи.
Нелинейные оптические явления — это та область, где отчетливо проявляется неразделимое единство двойственной природы света. Все, что только что говорилось об умножении частоты света, выражалось при помощи привычных для радистов волнозых понятий. Но все это можно выразить и иначе.