Приборостроение
Шрифт:
Функциональный узел выступает как запасная часть, тем самым значительно сокращая срок ремонта. Миниатюризация привела к автоматизации производства и к широкому применению средств автоматики.
Если для конструирования радиоэлектронной аппаратуры используются полупроводниковые приборы, то обостряются вопросы герметизации и теплоотвод, зато повышается быстродействие и надежность. Все это, в конечном счете, обуславливает повышение точности приборов, снижение многих издержек производства, в том числе себестоимости.
Обострившиеся с появлением и
34. Вопросы миниатюризации радиоэлектронной аппаратуры
Вопросы миниатюризации относятся к наиглавнейшим в современном приборостроении не только потому, что и в развитии радиоэлектронной аппаратуры в целом, и в радиоэлектронных узлах в частности это является главным направлением, но также и из-за вопросов повышения конкурентоспособности.
Этот вопрос также является вопросом точности измерения. Выше, в процессе изложения вопросов передачи ошибки из одного узла в другой, было видно, что меньшая ошибка и передается в меньшей степени.
У миниатюрных приборов потребляемая мощность меньше, следовательно, отклонение параметров не так уж и велико; отсюда и незначительность отклонений в других узлах.
В настоящее время в приборостроении наблюдаются следующие тенденции: продолжаются поиски в направлении микромодульной техники; в приборостроение проникают достижения нанотехнологий; развивается технология изготовления радиоэлектронных компонентов на тончайших пленках; осуществляется реализация криотронных схем (речь идет о сверхпроводимости при низких температурах).
Изготовление одного и того же прибора на разном сочетании этих и других технологий – сегодня не исключение. Принцип взаимозаменяемости требует производства таких микромодулей, на базе которых в любом случае можно было бы собрать новый функциональный узел с помощью небольшого присоединения других радиоэлектронных компонентов (подстроечные и постоянные конденсаторы, резисторы). Например, множество плат с БИС (большие интегральные схемы), ОУ (операционные усилители) и прочее могли бы быть примером сказанному.
Но может случиться так, что все эти подстроеч-ные элементы в них уже содержатся.
Достоинством технологий тонких пленок является то, что из-за плоской формы радиодеталей улучшается степень охлаждения, которая позволяет увеличить мощности потребления. Однако такое достоинство осложняется компоновкой миниатюрных радиоэлектронных устройств. Компоненты становятся недоступными. В конечном счете достоинства оказываются большими, чем издержки в миниатюризации. Следовательно, тенденция остается перспективной.
Современное название этой технологии – наноэлект-роника, нанотехнология.
Сперва нанотехнология (н/т) привлекала к себе внимание конструкторов из-за лучшей возможности рассеяния изменной мощности; затем открылись совсем другие, неожиданные формы ее применения.
Сложилась так, что в РЭА подстроечные компоненты (резисторы, конденсаторы) устанавливают на краях (в конце) модулей; в микроэлектронике конденсаторы с емкостью >60 пф не применяются. Остальные части микромодуля присоединяются к подстроечным. После, весь модуль экранируют и заливают эпоксидом, оставляя доступы к подстроечным.
На плате микромодули устанавливают, исходя из конкретных потребностей. Тонкие покрытия (порядка размеров молекул) получаются путем вакуумного испарения. Этот медот (метод вакуумного испарения) позволяет «выращивать», – по атомам и молекулам, – не только сопротивлений, конденсаторов, но и индуктивности, селеповые выпрямители и прочих на-ноэлектронных деталей.
Однако, компонок таких деталей сложнее, чем установка на плате других деталей.
35. Элементы электронных цепей ИП
Зачем нужны электронные устройства в ИП (измерительных приборах)? Для самых различных целей: от усиления слабых сигналов датчиков до преобразования или генерирования сигналов самых различных форм и частоты.
При их изготовлении используют электровакуумные лампы и полупроводниковые приборы, такие, как диоды, триоды и прочие. Эти РЭУ (радиоэлектронные устройства) работают в основном в двух режимах:
1) в режиме большого сигнала, когда при изменении электрических параметров в диапазоне их изменения могут оказаться и нелинейные участки ВАХ (вольтамперная характеристика) приборов;
2) в режиме малого сигнала, когда в диапазоне изменения оказываются в основном линейные участки ВАХ.
Усилители. Основным критерием выбора являются классы усиления, а для этого исходят из энергетического баланса (КПД – коэффициент полезного действия), последний характеризуется коэффициентом использования прибора по мощности
где Pkmax– максимальная мощность нагрузки; Ppmax – мощность, рассеиваемая во всех усилительных приборах каскада.
Сами классы усиления характеризуются длительностью протекания тока в выходной цепи. Величину этой длительности называют углом отсечки. Если исходить из качественных характеристик классов усилителей, то они различаются в основном величиной нелинейных искажений. По мере перехода от класса А к классам В, С, D искажения увеличиваются.
Модуляторы служат для преобразования сигналов, независимо от скорости их изменения, в переменные, но такое преобразование требует наличия ряда условий:
1) амплитуда переменного напряжения U ~ UМГH – мгновенное значение напряжения сигнала;