Приключение великих уравнений
Шрифт:
Максвелл упорно учится. Из академии он переходит в Эдинбургский университет, быстро исчерпав его, он отправляется в Кембридж, в Тринити колледж, где некогда учился Ньютон и где математика преподавалась на таком высоком уровне, как нигде больше. К сожалению, к физике отношение там было не слишком радушное - в колледже, как писал английский физик Л. Шустер, предполагалось, что "физика как наука давно оформилась, и добавить к ней нечего", "все главнейшие факты в природе уже известны, что шансы сделать большое экспериментальное открытие ничтожно малы и что поэтому задача экспериментатора состоит в разрешении споров между соперничающими теориями или в нахождении незначительных остаточных явлений, которые могут добавить более
Несмотря ни на что, Максвелл решил посвятить себя именно физике. Его наставник Гопкинс писал: "Это был самый экстраординарный человек, которого я когда-либо видел. Он органически был неспособен думать о физике неверно. Я растил его как великого гения, со всей его эксцентричностью и его пророчеством о том, что он в один прекрасный день будет сиять в физике - пророчеством, с которым убежденно были согласны и его коллеги-студенты".
Джеймс Клерк Максвелл.
Особое впечатление произвела на Максвелла книга Фарадея "Экспериментальные исследования по электричеству". Двадцатилетний Максвелл встретился наконец со своей ровесницей - теорией Фарадея, не особенно жалуемой великолепными учеными за свой плебейский наряд, начисто лишенный математической мишуры. Но на проницательного Максвелла, видевшего вещи гораздо глубже своих даже более старших современников, "Экспериментальные исследования" произвели неизгладимое впечатление. "Я решил, - писал он, - не читать ни одного математического труда в этой области, покуда не изучу достаточно основательно "Экспериментальных исследований по электричеству".
Это была любовь с первого взгляда, любовь на всю жизнь. Многочисленные его увлечения другими отраслями физики были тоже очень плодотворны - он изобрел волчок, поверхность которого окрашена была в разные цвета - при вращении волчка цвета сливались: сочетания получались самые неожиданные - красный и желтый давали оранжевый цвет, синий и желтый давали зеленый, спектр при смешении давал белый цвет - действие, обратное действию призмы - "диск Максвелла"; он нашел термодинамический парадокс, много лет не дававший покоя физикам - "дьявол Максвелла"; в кинетическую теорию были введены им "распределения Максвелла" и "статистика Максвелла - Больцмана"; есть "число Максвелла". Кроме того, его перу принадлежит изящное исследование об устойчивости колец Сатурна, за которое ему была присуждена академическая медаль и после которого он становится "признанным лидером математических физиков". Кроме того, Максвелл создал множество небольших шедевров на самые разнообразные темы - от осуществления первой в мире цветной фотографии до разработки способа радикального выведения с одежды жировых пятен.
Но главная память о Максвелле, вероятно единственном в истории науки человеке, в честь которого имеется столько названий, - это "уравнения Максвелла", "электродинамика Максвелла", "правило Максвелла", "ток Максвелла" и, наконец, - максвелл - единица магнитного потока в системе CGS.
Все приведенные названия относятся к области физики, которой Джеймс Клерк Максвелл посвятил жизнь, - электродинамике, теории электромагнитного поля.
Ко времени Максвелла существовало две теории электричества: теория "силовых лилий" Фарадея и теория, разработанная великими французами Кулоном, Ампером, Био, Саваром, Араго и Лапласом. Исходная точка французов представление о так называемом "дальнодействии", мгновенном действии одного тела на другое на расстоянии без помощи какой-либо промежуточной среды.
Эти ученые были в плену авторитета великого Ньютона и в плену созданных им математических формул, хотя Ньютон, по существу, не может считаться первым апологетом "действия на расстоянии". Так, он, в частности, писал:
"Непонятно, каким образом неодушевленная косная материя, без посредства чего-либо иного, что нематериально, могла бы действовать на другое тело без взаимного прикосновения.
Что тяготение должно быть врожденным, присущим и необходимым свойством материи, так что одно тело может взаимодействовать с другим на расстоянии, через пустоту, без участия чего-то постороннего, при посредстве чего и через что их действие и сила могли бы передаваться от одного к другому, это мне кажется столь большим абсурдом, что я не представляю себе, чтобы кто-либо, владеющий способностью компетентно мыслить в области вопросов философского характера, мог к этому прийти".
Таким образом, Ньютон сам не стоял на позициях дальнодействия. Однако последователи его - Роджер Котс и впоследствии черногорец Бошкович пришли в конце концов к тому, что тяготение - столь же существенное свойство материи, как протяженность, способность к движению и т. п. Другими словами, они пришли к тому, что промежуточная среда для взаимодействия не нужна - они пришли к "дальнодействию".
Шарль Огюстен Кулон в начале своей научной деятельности написал несколько трактатов о скручивании нитей, волос, тонких проволок. Его глубокие знания в этом вопросе позволяли создать всем известные "крутильные весы", на которых он изучал силу, с которой взаимодействовали два электрических заряда.
Результат был поразителен: сила взаимодействия зарядов в пустоте, точно так же, как и ньютоновская сила тяготения, зависела лишь от величины зарядов и расстояний между ними. Пустота, находившаяся между зарядами, по мнению Кулона, никаким образом не входила в формулу вполне справедливо, так как там "ничего не было" и никакого механизма передачи от первого заряда к некоторому участку пространства, затем к другому, третьему и так до второго заряда, механизма, потребовавшего бы неизбежно некоторого времени для передачи усилий, представить себе было невозможно.
Поэтому Кулон был твердо убежден, что промежуточная среда во взаимодействии участия не принимает, взаимодействие происходит на расстоянии без ее участия и, следовательно, мгновенно.
Точка зрения ранних приверженцев близкодействия - тело может придать движение другому только путем соприкосновения с ним. "Тело, движущееся или покоящееся, должно побуждаться к движению или покою другим телом, которое в свою очередь побуждается к движению или покою третьим телом, это - четвертым и так до бесконечности" (Спиноза). Эта точка зрения была отвергнута признанием дальнодействия, которое, в свою очередь, уступило место близкодействию, но уже не на основе непосредственного контакта тел, а на основе взаимодействия тел с полями.
Открытие закона взаимодействия магнитных масс, в точности повторяющего "по конструкции" законы Ньютона и Кулона, утвердило французских физиков в справедливости концепции "мгновенного дальнодействия".
Теории великих французов были прекрасно математически обработаны, и в общем выстраивались в довольно изящную и цельную теорию.
Воззрения Фарадея в корне расходились с такими представлениями. Он, как мы уже упоминали, не знал математики. Это был "ум, который никогда не погрязал в формулах", по выражению Эйнштейна.
Максвелл писал впоследствии: "Может быть, для науки является счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому он не пытался углубляться в интересные, но чисто математические исследования, которых требовали его открытия. Он был далек от того, чтобы облечь свои результаты в математические формулы, либо в те, которые одобрялись современными ему математиками, либо в те, которые могли бы дать начало новым начинаниям. Благодаря этому он получил досуг, необходимый для работы, соответствующей его духовному направлению, смог согласовать идеи с открытыми им фактами и создать если не технический, то естественный язык для выражения своих результатов".