Чтение онлайн

на главную - закладки

Жанры

Приключения инженераРоман
Шрифт:

Во-первых, оказалось, что газовая динамика — интереснейшая область науки. Во-вторых, выяснилось, что эфир обладает всеми свойствами обычного реального, то есть вязкого и сжимаемого газа. В-третьих, что в микромире действуют обычные физические законы, те же, что и в макромире. В-четвертых, что все законы микромира, в том числе квантовость, корпускулярно-волновой дуализм и т. п., и т. д., элементарно объясняются законами газовой динамики.

А в-пятых, оказалось, что в самой газовой механике полно всяких нерешенных проблем, над которыми профессионалы еще не доломали свои головы. И одной такой проблемой является энергетика газовых вихрей. Потому что с точки зрения все того же Второго начала термодинамики совершенно непонятно, откуда газовые вихри — смерчи, циклоны и т. п. берут энергию. Ибо кпд у них больше единицы и поэтому их не может быть

на свете. А они есть. И хотя известно, что если факты противоречат теории, то тем хуже для фактов, все же надо было что-то придумать, чтобы эти факты объяснить. Но придумать тут решительно ничего невозможно, потому что газовые смерчи никак не вписываются в теорию. Тем более, что изучать смерчи небезопасно: был случай, когда смерч наполовину побрил курицу, выщипав на одной ее половине все перья, а на второй не тронув ни пушинки. Представляете, если то же самое произойдет с любопытным газодинамиком, как он тогда покажется своим жене и подругам?

А главное, даже представления о том, какую структуру имеет газовый вихрь, в учебниках нет. Все, что написано для жидких вихрей, не годится, так как жидкость не сжимается. Да и представления о вихрях в жидкости тоже какие-то неполноценные: там столько натяжек, что не видеть их могут только профессора, читающие студентам лекции на эту тему. Например, центр такого вихря должен вращаться по закону твердого тела, хотя это жидкость. А с чего бы это? Мне это показалось непонятным, но я утешился тем, что профессионалам виднее. Но о газовых вихрях профессионалы вообще ничего не говорят, так что тут я оказался совершенно свободным в своих изысканиях. И я пошел в одно из отделений своего родного института к Васе К., молодому, но уже талантливому инженеру.

— Вася, — спросил я его, — правда ли, что ты занимаешься газовыми вихрями, которые ломают наши авиационные двигатели, даже несмотря на то, что они самые крепкие в мире?

— Правда, — сказал Вася, — ломают, стервецы. 75 процентов всех поломок двигателей по этой причине. А все потому, что вихри образуются перед двигателями, никого не спросясь. Эти вихри бегают перед стоящим самолетом и тащат в турбину все, что плохо лежит перед самолетом на стоянке, даже булыжники или забытые пассатижи. Им все равно. И эта штука — отвертка или гаечный ключ — летит в компрессор и ломает там лопатки. Ты бы тоже не выдержал, если бы они полетели тебе в голову или в какое-нибудь другое место.

— Это верно, — согласился я. — Конечно, не выдержал бы. Ну и что вы собираетесь делать?

— А мы пока не знаем, — признался Вася, — посмотреть на вихри надо бы, да не знаем как. Подскажи что-нибудь.

Я подсказал. Надо сделать перед самолетом ямку, на нее положить доску с дырками, укрепить все это, чтобы вихрь не утащил эту доску в турбину, а под доску положить дымовушку, чтобы вихрь стал виден. Вокруг доски нужно поставить вертикальные пластинки, чтобы вихрь не болтался, а стоял на месте. А тогда уж можно и фотографировать. При этом я сказал, что вероятнее всего вихрь должен представлять собой трубу, то есть иметь уплотненные стенки, поскольку центробежная сила из центра выгонит молекулы газа на периферию, а пограничный слой, образовавшийся на внешней стороне вихря, не даст ему разбросаться. Вася согласился попробовать.

Но когда все это попробовали, и все получилось, то выяснилось, что при размере воздухозаборника метр на метр диаметр вихря составляет всего лишь 5–6 сантиметров. И если взять железную штангу и водить ею около вихря, то никакого воздействия на нее со стороны газового потока не наблюдается. А вот если, не приведи Господь, конец штанги попадет в вихрь, то ее рвет из рук с громадной силой.

— Руки вывернет и голову снесет, — пообещал Вася. — Так что ты поосторожнее, а лучше отойди подальше.

Получалось, что весь воздух в турбину поступает через образовавшийся вихрь, а значит его тело сильно уплотнено и скорости в нем очень даже большие. Но ведь вихрь образуется перед турбиной, а не сзади нее. Значит, турбина не может быть причиной вихреобразования, она только с помощью компрессора сосет воздух, образуя сильное течение воздуха. А вихрь образуется сам. Тогда кто же его сжимает, и что же при этом получается?

И тут я вспомнил, что в механике существует два способа движения массы при переменном радиусе ее вращения вокруг центра. В соответствии с первым способом масса движется вокруг гвоздика, на котором сидит гномик. Для того чтобы уменьшить радиус вращения массы, гномик должен потянуть на себя веревочку, к которой привязан груз. Но тогда он должен совершить работу, ибо нужно преодолеть центробежную силу. А во втором случае нет ни гномика, ни гвоздика, а есть цилиндр или палец, на которые наматывается веревочка. Если груз толкнуть, то он полетит вокруг цилиндра или пальца, это не принципиально, веревочка начнет наматываться на них, и радиус начнет уменьшаться.

Однако, пардон! В обоих случаях это движение с переменным радиусом. А в механике существует закон о том, что при вращении с переменным радиусом должен соблюдаться момент количества движения, то есть произведение радиуса на массу и на скорость ее движения должно оставаться неизменным. И если радиус уменьшается, то скорость должна расти, а энергия расти. А за счет чего? Ведь не из пальца же она высасывается, то есть не из цилиндра же, вокруг которого масса движется по инерции безо всякого дополнительного подвода энергии. Не получается ли, что мы имеем два разных случая движения массы с переменным радиусом? Где в механике эти случаи положены рядом и вместе рассмотрены? И тут выяснилось, что нигде. За 300 лет существования механики, которая изъезжена вдоль и поперек, никто не догадался этого сделать. А может, и догадался, но не опубликовал. А может быть, и опубликовал, но я этого не нашел, хотя и перевернул не одну книгу.

И тогда я пошел к своему товарищу Михаилу Ефимовичу.

— Дорогой Ефимыч, — сказал я ему. — Помоги моему горю. Поставь, пожалуйста, на попа вон те два цилиндра, которые остались у нас от морских экспедиций. Диаметр у них подходящий — по 10 сантиметров, и укрепи на них два маятника из стальных шариков с ниткой. Вот я тебе их принес, прямо из проходной шарикоподшипникового завода. Они, правда, бракованные, в подшипники не годятся. Но на проходной даже не спросили, что я несу. Так что я мог вполне вынести не только бракованные шарики, но и ползавода. Но ползавода нам с тобой пока не нужны, это в другой раз. Придумай, как просверлить дырки в закаленных шариках, а потом два шара подвесь за нитки к этим цилиндрам. А третий шарик на горизонтальной нитке прикрепи к одному из цилиндров.

Михаил Ефимович все так и сделал, добавив к каждому маятнику по шкале. Тогда мы отклонили первый маятник, отпустили шарик, он стукнул по шарику номер три, тот соскочил с гвоздя, описал спираль вокруг второго цилиндра, намотав на него нитку, и ударил по шарику номер два. И оказалось, что углы отклонения первого и второго маятников практически одинаковы, у второго чуть-чуть поменьше, потому что потери. И все встало на свои места.

Значит, когда шарик движется по инерции вокруг цилиндра, мы имеем закон постоянства энергии, а не момента количества движения. Постоянство момента мы имеем тогда, когда подводим энергию, т. е. когда имеется гномик или что-то его заменяющее. Это все тут же было подтверждено математическими выкладками. И, значит, при формировании газового вихря мы именно этот случай и имеем. А роль гномика выполняет внешняя атмосфера, которая сжимает вихрь. Она это может сделать потому, что стенки вихря состоят из газа, и если сумма внутреннего давления в вихре и давления, вызванного центробежной силой, превышает внешнее давление, то лишний газ тут же отлетит, а внешнее давление будет сжимать тело вихря, увеличивая его энергию.

Таким образом, над формированием каждого воздушного вихря трудится вся атмосфера планеты, и над циклоном, и над смерчем, и над тем вихрем, что образуется перед самолетом. И этот процесс перегоняет потенциальную энергию давления воздуха в кинетическую энергию тела вихря. И если потенциальной энергией атмосферы воспользоваться трудно, то кинетической легко, например, засунув в тело вихря турбину. Только при этом нужно соблюдать осторожность, а то этот вихрь может вас побрить, как упомянутую курицу, наполовину, отделив или прическу, или голову, это уж как получится.

Поделиться:
Популярные книги

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

На грани развода. Вернуть любовь

Невинная Яна
2. Около развода. Второй шанс на счастье
Любовные романы:
современные любовные романы
5.00
рейтинг книги
На грани развода. Вернуть любовь

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10