Чтение онлайн

на главную

Жанры

Шрифт:

Используя электронно-лучевую трубку собственной конструкции с электродами в виде пластин конденсатора и магнитными катушками, Томсон подвергал катодный пучок попеременному действию электрического и магнитного полей. При этом ученый получил возможность надежно и достаточно точно определять отношение заряда к массе катодных лучей. Подобное отношение оказалось независимым от вида разреженной газовой среды в вакуумированной колбе и в тысячу раз большим, чем такое же отношение для водородных ионов в электролитах, полученное на основе законов электролиза. Этот результат имел ошеломляющие следствия, ведь если допустить, что заряд «катодной корпускулы» равен заряду водорода, то ее масса будет в тысячу раз меньше, чем у легчайшего атома водорода. В 1906 году Томсон сделал окончательный вывод о том, что катодные лучи состоят из заряженных частиц,

а их элементарный заряд соответствует аналогичной величине одновалентных ионов и равен 1,03 x 10–19 Кулона, при средней массе в 1 / 1700 атома водорода.

Джозеф Джон Томсон (1856–1940)

Томсон был гениальным ученым, отличался творческим воображением и оригинальностью, его работы имели новаторский характер – они явились исходной точкой для всех дальнейших исследований.

Р. Собесяк.Шеренга великих физиков

Между тем Томсон упорно продолжал свои исследования, перейдя к анализу отношений для зарядов к их массам уже для частиц, генерируемых ультрафиолетовым излучением и просто испускаемых накаленным катодом. Во всех случаях порядок отношения заряд / масса оказался очень близким к катодному излучению. Эти мельчайшие частицы вещества Томсон назвал «катодными корпускулами», однако это несколько громоздкое название не удержалось.

Между тем общее признание факта существования электрона пришло лишь в 1911 году после ряда блестящих измерений элементарного заряда, выполненных американским физиком-экспериментатором Робертом Эндрюсом Милликеном (1868-1953), удостоенным Нобелевской премии 1923 года «За исследования в области элементарных зарядов и фото электрического эффекта». Сам по себе термин «электрон» вошел в широкое повсеместное употребление только после того, как в 1925 году немецкие физики Джеймс Франк (1882-1964) и Густав Людвиг Герц (1887-1975) стали нобелевскими лауреатами «За открытие законов столкновений электронов с атомами».

Электронно-лучевая трубка Томсона

Сегодня считается, что именно Томсон разработал экспериментальную технику управления «электронными лучами», дополнив это физическими методами изучения положительно заряженных частиц. Именно в кембриджской лаборатории Томсона начались первые измерения элементарного электрозаряда путем наблюдения движения потоков заряженных частиц в электромагнитных полях. Так появились методы, составившие основу электронной оптике, конструированию электронных ламп, «электронных пушек» и ускорителей элементарных частиц. Под руководством Томсона были созданы модели первых массспектрометров и разработаны методики анализа и разделения изотопов. Все эти экспериментальные разработки были суммированы и тщательно классифицированы в монографии ученого «Лучи положительного электричества», вышедшей в 1913 году, положившей начало масс-спектроскопии.

Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики, а также физики элементарных частиц очень велика. Но сам Джи-Джи, как называли своего учителя и коллегу сотрудники Кавендишской лаборатории, до самого конца своего жизненного пути оставался горячим сторонником «мирового светоносного эфира», разрабатывая всяческие модели движения в этой призрачной среде и пытаясь (увы – безуспешно) найти хоть какие-либо наблюдаемые явления, свидетельствующие о реальности эфирных представлений. Так, одно время Томсон упорно пытался ошибочно интерпретировать отклонение катодного пучка в магнитном поле своей трубки как некую «эфирную прецессию» гироскопической природы, наделяя совокупность электрического и магнитного полей «эфирным вращательным моментом».

Глава 3. Парадокс АЧТ

Этот закон Кирхгофа утверждает, что если в откачанном пустом пространстве, ограниченном полностью отражающими стенками, находятся совершенно произвольные излучающие и поглощающие тела, то с течением времени устанавливается такое состояние, при котором все тела имеют одну и ту же температуру, а излучение по всем своим свойствам, в том числе по спектральному распределению энергии, зависит только от температуры, но не от свойств тел. Это равновесное излучение и есть излучение абсолютно черного тела, закон распределения которого по длинам волн спектра представляет универсальную функцию длин волн и температуры. Это так называемое нормальное распределение энергии представляет собой нечто абсолютное.

М. Планк.

Научная автобиография

Макс Планк родился 23 апреля 1858 года в городе Киле в семье профессора гражданского права. В 1867 году семья будущего ученого переехала в Мюнхен. Там Макс Планк поступил в Королевскую Максимилиановскую классическую гимназию, прекрасные преподаватели которой сумели пробудить в юноше глубокий интерес как к гуманитарным, так и к естественным и точным наукам. С 1874 по 1878 год Планк изучал физику и математику вначале в Мюнхенском, а затем Берлинском университете.

В 1879 году Планк успешно защитил докторскую диссертацию, посвященную проблемам обоснования второго начала термодинамики, и продолжал вести теоретические исследования в области термодинамики и ее приложений к физической химии и электрохимии.

В 1896 году Планк заинтересовался проблемой теплового излучения так называемого абсолютно черного тела (АЧТ), т. е. тела, которое поглощает все падающее на него излучение и ничего при этом не отражает. Однако АЧТ обязательно должно что-то излучать само, в противном случае его температура росла бы до бесконечности. Из общих соображений ясно, что АЧТ должно излучать тем больше энергии, чем выше его температура. Значит, при некоторых условиях будет достигаться термодинамическое равновесие, когда поглощается столько же, сколько излучает. Отсюда возникла интересная теоретическая задача: найти эту температуру, а главное – спектр излучаемого света. Вот тут-то классическая физика зашла в тупик: даваемый ею теоретический результат оказался практически абсурдным: энергия излучения при любой температуре получалась бесконечной, при этом ее излучалось тем больше, чем короче длина волны. Обыкновенная печка должна была бы «светить» сильнее любой рентгеновской трубки.

Макс Планк (1858-1947)

…Планк стал революционером против собственной воли. Ошеломленный неожиданными с точки зрения классической физики последствиями своего открытия, он долгое время сопротивлялся признанию вытекающих из него следствий.

Ф. Гернек.Пионеры атомного века

История создания теории теплового излучения началась в 1859 году, когда один из основателей математической физики Густав Роберт Кирхгоф (1824-1887) открыл основные закономерности теплового излучения, обосновав их с помощью принципов термодинамики, и сформулировал понятие абсолютно черного тела. Вскоре пришло понимание, что испускательные способности АЧТ имеют универсальное значение. Грубо говоря, АЧТ все поглощает во всех мыслимых энергетических диапазонах и совершенно ничего не излучает, этим и оправдывая свое название.

Через два десятилетия словенский физик, математик и поэт Жозеф Стефан (1835-1893) на основе измерений, сделанных французскими учеными, обосновал вывод, что в модели АЧТ полная энергия всех длин волн может быть пропорциональна четвертой степени абсолютной температуры излучающей поверхности. При этом коэффициент подобной пропорциональности является универсальной константой.

Стефан сформулировал свой закон в 1879 году, а через пять лет его вывел теоретически Людвиг Эдуард Больцман (1844-1906), ученик Стефана. Для этого он применил к излучению хорошо известные законы термодинамики, исходя при этом из понятия светового давления, равного, согласно исследованиям Максвелла, для однородного (изотропного) потока энергии одной трети ее объемной плотности. Так возник закон излучения АЧТ Стефана – Больцмана, а входящая в него универсальная константа названа постоянной Стефана – Больцмана.

Поделиться:
Популярные книги

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Не возвращайся

Гауф Юлия
4. Изменщики
Любовные романы:
5.75
рейтинг книги
Не возвращайся

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка