Чтение онлайн

на главную - закладки

Жанры

Программирование на языке пролог
Шрифт:

o6p2(L1,L2):- обрдоп(L1,[],L2).

обрдоп([X|L],L2 fL3):- обрдоп(L,[Х|L2],LЗ).

обрдоп([],L,L).

Второй аргумент обрдописпользуется для хранения «текущего результата». Каждый раз, когда выявляется новый фрагмент результата (X), передаваемый в остальную часть программы, «текущий результат» представляет из себя старый «текущий результат», дополненный новым фрагментом X. В самом конце последний «текущий результат» возвращается в качестве результата исходного целевого утверждения. Аналогичный прием используется в разд. 7.8 при определении предиката имя_целого.

Исключение

одного элемента:Цель исключ1(Х, Y,Z)исключает первое вхождение элемента Xиз списка Y, формируя новый сокращенный список Z. Если в списке Yнет элемента X, то целевое утверждение недоказуемо. Граничное условие выполняется тогда, когда мы находим искомый элемент X, иначе осуществляется рекурсивная обработка хвоста списка Y:

исключ1(А,[А|L],L):-!.

исключ1(А,[В|L],[В|М]):- исключ1(А,L,М).

Легко добавить утверждение, которое обеспечит доказательство предиката, когда второй аргумент сократится до пустого списка. Это утверждение, реализующее новое граничное условие, есть исключ1(_,[],[])-

Исключение всех вхождений некоторого элемента;Цель исключить(Х, L1, L2)создает список L2путем удаления всех элементов Xиз списка L1. Граничное условие выполняется тогда, когда L1является пустым списком. Это означает, что мы рекурсивно исчерпали весь список. Если Xнаходится в голове списка, то результатом является хвост этого списка, из которого Xтоже удаляется. Последний случай возникает, если во втором аргументе обнаружено, что-то отличное от X. Тогда мы просто входим в новую рекурсию.

исключить(_, [],[]).

исключить(Х,[Х|L],М):-!, исключить(Х,L,М).

исключить(Х,[Y|L1],[Y|L2]):- исключить(Х,L1,L2).

Замещение:Этот предикат очень напоминает исключить,с той лишь разницей, что вместо удаления искомого элемента мы заменяем его некоторым другим элементом. Цель заменить(Х, L,A,M)строит новый список Миз элементов списка L, при этом все элементы Xзаменяются на элементы А. Здесь возможны 3 случая. Первый, связанный с граничным условием, в точности совпадает с тем, что было в исключить.Второй случай – когда в голове второго аргумента содержится элемент X, а третий – когда там содержится нечто отличное от X:

заменить(_,[],_,[]).

заменить(Х,[Х|L],А,[А|М]):-!, заменить(Х,L,А,М).

заменить(Х,[Y|L],А,[Y|М]):- заменить(Х,L,А,М).

Подсписки:Список Xявляется подсписком списка Y, если каждый элемент Xсодержится и в Yс сохранением порядка следования и без разрывов. Например, доказуемо следующее:

подсписок[[собрание, членов, клуба],[общее, собрание, членов, клуба, будет, созвано, позже]).

Программа подсписоктребует двух предикатов: один для нахождения совпадения с первым элементом, и второй, чтобы убедиться, что остальная часть первого аргумента поэлементно совпадает с соответствующей частью второго аргумента.

подсписок([Х|L],[Х|М]):- совпало(L,M),!.

подсписок(L,[_|М]):- подсписок(L,M).

совпало([],_).

совпало([Х|L],[Х|М]):-

совпало(L,М).

Отображение:Это мощный метод, заключающийся в преобразовании одного списка в другой с применением к каждому элементу первого списка некоторой функции и использованием ее результата в качестве очередного элемента второго списка. Программа преобразования одного предложения в другое, которая рассматривалась в гл. 3, является одним из примеров отображения. Мы говорим, что «отображаем одно предложение в другое».

Отображение настолько полезно, что заслуживает отдельного раздела. Кроме того, поскольку списки в Прологе – это просто частные случаи структур, мы отложим обсуждение отображения списков до разд. 7.12. Отображение многолико. В разд. 7.11, посвященном символическому дифференцированию, описывается способ отображения одного арифметического выражения в другие.

7.6. Представление и обработка множеств

Множество– одна из наиболее важных структур данных, используемых как в математике, так и в программировании. Множество – это набор элементов, напоминающий список, но отличающийся тем, что вопрос о том, сколько раз и в каком месте что-либо входит в множество в качестве его элемента, не имеет смысла. Так, множество (1, 2, 3) – это то же самое множество, что и (1, 2, 3, 1), поскольку значение имеет только сам факт, принадлежит данный элемент множеству или нет. Элементами множеств могут также быть другие множества. Самой фундаментальной операцией над множествами является определение того, принадлежитнекоторый элемент данному множеству или нет.

Не должно вызывать удивления, что множества удобно представлять в виде списков. Список может содержать произвольные элементы, включая другие списки, и над списками можно определить предикат принадлежности. Однако условимся, что когда мы представляем множество в виде списка, такой список содержит только по одному элементу на каждый объект, принадлежащий множеству. При работе со списками без повторяющихся элементов упрощаются некоторые операции, такие, как удаление элементов. Итак, нам предстоит иметь дело только со списками без повторяющихся элементов. Предикаты, рассматриваемые ниже, соблюдают это свойство и опираются на него.

Над множествами обычно определяется следующий набор операций (мы будем применять и общепринятые математические обозначения для тех читателей, кто к ним привык):

Принадлежность множеству: XY

Xпринадлежит некоторому множеству Y, если Xявляется одним из элементов Y.

Пример: а{с,а,t}.

Включение: X Y

Множество Yвключает в себя множество X, если каждый элемент множества Xявляется также элементом Y. Множество Yможет содержать некоторые элементы, которых нет в X.

Пример: {x,r,u} {p,q,r,f,t,u,v,w,x,y,z}.

Пересечение: XY

Пересечением множеств Xи Yявляется множество, содержащее те элементы, которые одновременно принадлежат Xи Y.

Пример: {r,a,p,i,d} {p,i,c,t,u,r,e}= {r,i,p}.

Объединение: X Y

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Колючка для высшего эльфа или сиротка в академии

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Колючка для высшего эльфа или сиротка в академии

Адский пекарь

Дрейк Сириус
1. Дорогой пекарь!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Адский пекарь

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2