Происхождение мозга
Шрифт:
Нервная система млекопитающих оказывается крайне «дорогим» органом, поэтому чем меньше времени мозг работает в интенсивном режиме, тем дешевле обходится его содержание. Проблема решается по-разному. Один из способов связан с минимизацией времени интенсивного режима работы нервной системы. Это достигается большим набором врождённых, инстинктивных программ поведения, которые хранятся в мозге как набор инструкций. Инструкции для различных форм поведения нуждаются только в небольших коррекциях для конкретных условий. Мозг почти не используется для принятия индивидуальных решений, основанных на личном опыте животного. Выживание становится статистическим процессом применения готовых форм поведения к конкретным условиям среды. Энергетические затраты на содержание мозга становятся ограничителем
Например, допустим, что американский крот-скалёпус решил попользоваться своим мозгом, как приматы или человек. Рассмотрим исходные условия. Крот массой 40 г обладает головным мозгом массой 1,2 г и спинным мозгом вместе с периферической нервной системой массой примерно 0,9 г. Имея нервную систему, составляющую более 5% массы тела, крот затрачивает на её содержание около 30% всех энергетических ресурсов организма. Если он задумается над решением шахматной задачи, то расходы его организма на содержание мозга удвоятся, а сам крот моментально погибнет от голода. Даже если крот затолкнёт в кишечник бесконечного дождевого червя из чёрной икры, то он всё равно погибнет. Мозгу будет нужно столько энергии, что возникнут неразрешимые проблемы со скоростью получения кислорода и доставки исходных метаболических компонентов из желудочно-кишечного тракта. Появятся аналогичные трудности с выведением продуктов метаболизма нервной системы и её элементарным охлаждением. Таким образом, мелкие насекомоядные и грызуны обречены не стать шахматистами. Их мозг
52
инстинктивен, а энергетические проблемы его содержания ставят непреодолимые барьеры для развития индивидуального поведения. На индивидуальном уровне может возникнуть только вариабельность применения врождённых программ поведения.
Рис. I-8. Обменные процессы в головном мозге приматов.
В метаболизме нервной системы можно выделить три основных динамических процесса: обмен кислорода и углекислого газа, потребление органических веществ и выделение продуктов катаболизма, обмен воды и растворов электролитов. Доля потребления этих веществ мозгом человека указана в нижней части. Обмен воды и растворов электролитов вычисляется как время прохождения всей воды организма через мозг. Верхняя строка — пассивное состояние, нижняя — напряжённая работа нервной системы.
Кислородный Вода Питательные
обмен н электролиты вещества
53
Однако достаточно немного увеличить размеры тела, и возникает качественно иная ситуация. Серая крыса (Rattus rattus) обладает нервной системой массой примерно 1/60 массы тела. Этого уже достаточно, чтобы достигнуть заметного снижения относительного метаболизма мозга. Результаты интеллектуальных экспериментов и наблюдений за крысами не имеет смысла пересказывать, а степень индивидуализации поведения не сопоставима с таковой кротов и землероек. Очевидным преимуществом увеличения массы тела является уменьшение расходов на содержание мозга. Постоянно работающие периферические отделы не столь затратны, как мозг, поэтому увеличение массы тела приводит к относительному «удешевлению» мозга.
Следовательно, для создания индивидуализированного мозга нужно животное с достаточно большой массой тела. Иначе говоря, существует своеобразный барьер, который через размеры тела и массу мозга ограничивает способность животных к обучению и индивидуализированному поведению. Мелкое животное с большим мозгом и высокими затратами на его содержание не сможет обеспечить энергетических затрат на повышение его активности. Таким образом, решения сложных задач или глубокой индивидуализации адаптивного поведения ждать не приходится. Если животное большое, а размеры мозга относительно невелики, то допустимы существенные колебания энергетических затрат на его содержание. В этой ситуации
возможны и индивидуализация поведения, и сложные процессы научения. Однако даже у крупного животного с хорошо развитым мозгом существуют энергетические проблемы. Нервная система слишком дорога для её интенсивной эксплуатации. Небольшая и интенсивно работающая нервная система потребляет колоссальную долю ресурсов организма. Эта ситуация невыгодна. Энергетически оправданным решением может быть только кратковременное использование мозга для решения конкретных задач. Это и наблюдается у крупных млекопитающих. Краткая активность быстро сменяется длительным покоем.
Таким образом, у маленькой и большой нервной системы есть свои преимущества. Для реализации инстинктивного поведения можно иметь небольшой мозг, но его адаптивность сводится к модификациям инстинкта. Большой мозг обходится своему владельцу довольно дорого, но высокие энергетические расходы вполне оправданы. Большой мозг позволяет справляться со сложными задачами, которые не имеют готовых инстинктивных решений. Затратность реализации таких механизмов адаптивного поведения очень высока, поэтому как животные, так и человек стараются использовать мозг как можно реже.
54
Привилегированность нервной системы
Нервная система многих животных (и особенно у млекопитающих) обладает одним свойством, которое ставит её в исключительное положение. Это свойство связано с её изолированностью от остального организма. Будучи основным механизмом интеграции работы внутренних органов и основой поведения, она является «инородным телом» для собственного организма. Иммунная система рассматривает нервную систему примерно как занозу. Если иммунная система «добирается» до мозга, то начинаются тяжёлые аутоиммунные процессы, малосовместимые с жизнью.
Возникает парадоксальная ситуация. Нервная система потребляет огромную часть кислорода и питательных веществ всего организма, которую получает через кровь. Одновременно она должна быть тщательно изолирована от кровеносной системы, поскольку рассматривается клетками иммунной системы как инородный объект.
С точки зрения биологической целесообразности видно явное противоречие. Основной интегрирующий орган не должен быть чужеродным для иммунной системы. Тем не менее это факт, которому довольно легко найти внятное объяснение. В головном мозге слишком много специализированных органических компонентов, которые больше нигде в организме не используются. Создавать в иммунной системе механизм их распознавания как «своих» клеток крайне сложно и неоправданно. Намного «дешевле» просто отделить нервную систему от всего остального организма. Этот принцип изоляции реализован в семенниках, яичниках и нервной системе. В самом общем виде изоляция нервной системы поддерживается при помощи гематоэнцефалического барьера, состоящего из нескольких типов специализированных клеток. Чтобы разобраться с изолированностью нервной системы от остального организма, надо рассмотреть элементарные принципы её строения.
§ 7. Гематоэнцефалический барьер
Нервная ткань — это объединение специализированных клеток, которые воспринимают, обрабатывают, хранят и используют информацию о внешней среде и внутреннем состоянии организма. Этим функциям подчинено строение нервных клеток — нейронов. Нервные клетки имеют особенности, которые отличают их от других клеток организма (рис. I-9). Нейроны неодинаковы. Они различаются по размеру, форме ветвления дендритов и аксонов, выделению различных химических веществ и физиологической активности. Нейроны —