Происхождение растений
Шрифт:
Морская вода представляет собою гораздо большую однородность и, вероятно, никогда не достигала точки кипения, разве в горячих же ключах, выбивающихся иногда в вулканических странах из-под берега.
Кроме того, глубины океана мало благоприятны для простейших организмов, обычно концентрирующихся у его поверхности, там, где в воду проникают и воздух и свет, при небольших давлениях воды.
Предполагая, таким образом, что жизнь зародилась первоначально в горячих ключах, богатых растворами солей, в том числе также и солей угольной и азотной кислот, мы охотнее допускаем зарождение ее простейших форм из неорганических осадков на дне ключей, чем занос из других звездных миров. Этого нельзя доказать, но, может быть, со временем химикам и удастся произвести синтез белков, и тогда вопрос станет гораздо доступнее нашему пониманию, чем это имеет место теперь.
В последнее время открыт ряд
Итак, жизнь некогда зародилась на Земле в виде простейших растительных организмов, не требовавших для своего существования ни света, ни кислорода воздуха, ни органического вещества. Зародилась в виде мельчайших бесструктурных существ, из которых впоследствии образовались остальные.
18
Понятие об организме тесно связано с представлением об органах, посредством которых осуществляется работа жизни. Изучение основных процессов жизни — питания, дыхания и роста — приводит нас, однако, к представлению об определенных химических реакциях, происходящих в живом веществе, протоплазме. Отсюда логическая возможность мыслить о живом веществе, не имеющем никаких органов, о протоплазме, живущей самостоятельно. Такое живое вещество, без другой организации, кроме молекулярной, способное питаться и дышать, но подобное по внешности белку сырого куриного яйца, должно было развиваться раньше, чем могли зародиться на Земле организмы с определенными внешними формами и какими-либо органами.
Отсюда тот живой интерес, с которым К. Маркс и Ф. Энгельс отметили в своей переписке извещение Гексли о якобы открытом им глубоководном организме батибии, состоявшем из белковой слизи. Хотя впоследствии химический анализ не подтвердил этого, самая идея не потеряла значения.
«Жизнь есть способ существования белковых тел, и этот способ существования заключается по своему существу в постоянном обновлении их химических составных частей путем питания и выделения» [19] .
19
Ф. Энгельс. Анти-Дюринг. М., Госполитиздат, 1951, стр. 322.
Глава IV
КРУГОВОРОТ ЖИЗНИ И КРУГОВОРОТ ВЕЩЕСТВА В ПРИРОДЕ
Известно, что если сжечь массу различных растении, предварительно высушив их до постоянного веса, то получится, с одной стороны, водяной пар и углекислый газ, а с другой стороны — зола. Если теперь разложить полученные вещества на элементы, то мы получим в процентах следующие соотношения:
Углерод….. 45
Кислород… 42
Водород…. 6,5
Азот………. 1,5
Остальные: сера, фосфор, калий, кальций, магний, железо, хлор, кремний, иод, бром, натрий
В то время как первые 4 элемента составляют 95 % общего веса сухого вещества растений, все остальные встречающиеся в их золе простые вещества дают в сумме всего 5 %. Тем не менее, без серы, фосфора, калия, кальция, магния и железа, как показывают точные опыты с культурами на минеральных растворах, растения существовать не могут.
Жизнь растений тесно связана с поглощением элементов, составляющих их тело. Обмен веществ — главная и наиболее важная для нас работа растений. Посмотрим, откуда они заимствуют эти элементы и куда отдают их по использовании. Надо иметь в виду, что растения не поглощают твердой пищи, не имеют пищеварительной полости, а питаются водными растворами необходимых для их дыхания и роста веществ, которые поглощают путем всасывания корнями и внутренними частями мякоти листьев. Для того, чтобы выяснить значение и перемещения каждого из существенных для жизни растений элементов, прибегнем к методу выяснения того круговорота веществ, который постоянно происходит на Земле, то переводя интересующий нас элемент в свободное состояние, то снова связывая его в составе сложных соединений,
1. УГЛЕРОД
Согласно сводке В. И. Вернадского (Геохимия, 1927), среднее содержание углерода в земной коре соответствует 0,4–0,5 % от общего ее веса. В странах, богатых известняками (углекислый кальций), количество углерода выше и достигает 10–12 %. Но во всех подобных случаях значительная часть этого запаса углерода образовалась за счет остатков живых существ и, особенно, растений, погребенных под слоями наносов.
Первичными соединениями углерода, возникшими помимо участия организмов в его накоплении, как показывают химические исследования продуктов вулканизма, являются углекислота, окись углерода, углеводороды, наконец, некоторые производные муравьиной кислоты, которая может образовываться при высоких температурах путем восстановления углекислоты в присутствии воды.
Угольная кислота, как уже упоминалось, выделяется вулканами в огромных количествах и затем более или менее равномерно распределяется в атмосфере. Как известно, она составляет 0,03 % общего веса нижних слоев атмосферы. И хотя углерод составляет только 3/11 веса углекислоты, а остальные 8/11 приходятся на кислород, тем не менее общий запас углерода в атмосфере исчислен в 800 биллионов кг.
Углекислота [20] воздуха, как и все газы, способна диффундировать, т. е. равномерно распределяться во всем доступном ей пространстве. Сквозь невидимые глазу отверстия в кожице листьев, называемые устьицами, она проникает во внутренние полости листа, воздушные ходы, и здесь растворяется в жидкости, смачивающей оболочки живых клеток мякоти листа. Водный раствор углекислоты встречает внутри клеток зеленые хлорофильные зерна и при их содействии разлагается действием солнечных лучей, распадаясь на углерод и кислород. Кислород выделяется наружу, а углерод вступает в соединение с элементами воды, кислородом и водородом и образует тройные соединения, называемые углеводами, причем основным соединением этого рода приходится считать виноградный сахар, или иначе глюкозу. Далее идут крахмал, тростниковый сахар, клетчатка и многие другие менее распространенные тела той же химической группы углеводов.
20
Безводная углекислота, или угольная кислота (вернее ангидрид угольной кислоты), содержит 72,71 % кислорода и 27,28 % углерода и представляет собою конечный окисел углерода; такого соединения углерода, которое содержало бы больше кислорода, чем его имеется в углекислоте, не существует.
В процессе дыхания растение, поглощая из воздуха свободный кислород, снова образует углекислоту за счет углеводов и отдает ее назад атмосфере. Процесс этот называется также диссимиляцией и сопровождается потерей в весе, тогда как усвоение углерода углекислоты — ассимиляция дает увеличение веса.
В тех случаях, когда кислорода недостаточно для полного окисления сахара на углекислоту и воду, возникают обычно процессы брожения, дающие при распаде сахара выход спирта и углекислоты. Значительная часть поглощенного растением углерода утилизируется им на постройку его тканей и отдается обратно только после его гибели, когда процессы гниения и брожения разложат и древесину и другие части растения с конечным образованием тюх же углекислоты и воды, метана и пр.
В самом растении углевод претерпевает весьма сложные превращения, входя в состав живого вещества, а также в образуемые растением запасы.
С превращениями углерода тесно связаны превращения солнечной энергии, поглощаемой зелеными растениями одновременно с углекислотой. При усвоении углерода и образования углеводов поглощается масса энергии и вся она переходит в потенциальную химическую энергию углеводов. Если вместо углеводов образуются жирные масла, или за счет углеводов и жирных масел путем присоединения к ним азотистых соединений образуются белки или протеины, то и в них вводится потенциальная химическая энергия, заимствованная от Солнца.
При дыхании, брожении, гниении потенциальная химическая энергия углеводов, жиров и белков, составляющих тело растения, освобождается, превращается в динамическую и так или иначе расходуется. Мы лучше всего это видим, когда сжигаем в наших печах дрова или уголь и пользуемся освобождающимся при этом теплом.
Сжигаемое ежегодно количество каменного угля, не считая других видов топлива, выбрасывает в атмосферу около 1400 000 млн. кг углекислоты, которая снова утилизируется растениями. Таким образом, общий круговорот углекислоты в природе таков: