Чтение онлайн

на главную

Жанры

Происхождение жизни. От туманности до клетки
Шрифт:

При ином химическом составе небесного тела оно разделяется на другие слои. Например, крупные спутники планет-гигантов имеют силикатное ядро, мантию из жидкой воды и ледяную кору. На Европе и Энцеладе есть даже аналоги вулканизма и движения литосферных плит – многокилометровые фонтаны воды и движение ледяных блоков коры. Сами планеты-гиганты разделяются на протяженную атмосферу из водорода и гелия, более тяжелый слой жидких метана, аммиака и воды и силикатно-железное ядро. Большую часть их диаметра составляет массивная плотная атмосфера.

Приливные явления

Законы Кеплера подразумевают, что орбиты планет и спутников неизменны и вечны. Однако эти законы выполняются в точности, только если размеры тел ничтожно малы по сравнению с расстояниями между ними, а влиянием планет друг на друга можно пренебречь. Поскольку реальные планеты и спутники имеют заметные размеры, сила притяжения

действует на их ближние к друг другу части сильнее, чем на дальние. За счет этой разницы небесные тела немного деформируются, их форма становится слегка вытянутой, подобно дыне. В случае Земли ее океаны легче поддаются деформации, чем земная кора, и изменения их уровня под действием тяготения Луны вызывают приливы, благодаря чему эти силы получили свое название.

Приливные силы быстрее уменьшаются с расстоянием, чем сила тяжести. При увеличении расстояния в два раза притяжение между телами ослабляется в четыре раза, а приливные влияния – в восемь раз. Поэтому на Земле приливные силы, вызванные Луной, преобладают над приливными силами Солнца, хотя Солнце гораздо массивнее Луны.

Движение масс воды, натыкающихся на континенты, и трение в деформируемой земной коре приводят к выделению тепла. Источником этой тепловой энергии является вращение планеты, и оно постепенно замедляется под действием приливов. Кроме того, похоже, что приливное действие Луны направляет дрейф материковых плит земной коры – их движение заметно несимметрично в направлении запад – восток (Riguzzi et al., 2010).

Благодаря приливным силам возможно взаимодействие между вращением планеты и орбитальным движением ее спутников. В системе Земля – Луна вращение Земли вокруг своей оси гораздо быстрее, чем орбитальное движение Луны, поэтому приливный «горб» на Земле немного обгоняет Луну. Притяжение Луны к этому горбу приводит к тому, что вращение Земли постепенно замедляется, а кинетическая энергия передается Луне. При этом радиус лунной орбиты растет, также растет и период обращения Луны вокруг Земли.

Более крупный из спутников Марса, Фобос, совершает оборот вокруг планеты всего за 6 часов, тогда как период вращения Марса вокруг своей оси – 24,5 часа, чуть больше, чем у Земли. Поэтому в системе Марс – Фобос происходит передача кинетической энергии в обратную сторону – от спутника к планете. Фобос неуклонно приближается к Марсу и в ближайшие 15–20 млн лет достигнет так называемого предела Роша, где приливные силы сравняются с тяготением Фобоса, скрепляющим его в единое тело. Достигнув этого предела, Фобос разрушится, и вокруг Марса появится кольцо из камней и пыли, подобное кольцам Сатурна.

При движении спутника по эллиптической орбите его скорость максимальна в ближайшей к планете части орбиты и там же максимально приливное взаимодействие. Поэтому приливы могут изменять форму орбиты спутника. Так, орбита Луны становится более вытянутой под действием приливов, а у орбит спутников Юпитера, наоборот, вытянутость уменьшается.

Орбитальные резонансы

Есть и другая причина, по которой движение планет немного отклоняется от описанного в законах Кеплера. Это гравитационное взаимодействие между планетами. Хотя оно гораздо слабее, чем их притяжение Солнцем, за миллионы лет его влияние может накапливаться и сильно изменять орбиты. Притяжение двух планет друг к другу максимально в период противостояния – когда расстояние между ними минимально. Поэтому влияние разных планет на движение друг друга вокруг Солнца зависит от отношения их периодов обращения. Если эти периоды не образуют простого соотношения типа 1:2, 2:3 или 2:5, то противостояния происходят в разных участках орбит без строгой закономерности, а изменения орбит на больших промежутках времени стремятся к нулю. Если периоды обращения планет относятся как небольшие целые числа, то говорят, что их орбиты находятся в резонансе. В этом случае противостояния происходят в одних и тех же местах орбиты, небольшие изменения орбит постепенно накапливаются, и со временем орбиты могут сильно изменяться [1] .

1

Наглядное представление об устойчивости планетных орбит можно получить в онлайн-игре Super Planet Crash . – Здесь и далее прим. авт.

Последствия орбитального резонанса зависят от нескольких факторов: соотношения масс тел, отношения их периодов обращения и эксцентриситетов орбит. Такие резонансы, как 1:2, 1:3, 5:2, 3:7, как правило, приводят к быстрому изменению орбит. Если массы тел сильно отличаются (например, Юпитер и астероид), то орбита астероида становится сильно вытянутой, и он выбрасывается из Солнечной системы. Резонансы 2:3, 3:4, 4:5, напротив, могут стабилизировать орбиты. Так, астероиды группы Хильды находятся в устойчивом резонансе 2:3 с Юпитером, а Плутон – с Нептуном.

Особенно быстрые изменения происходят при резонансе 1:2 – тогда планеты встречаются в одной и той же части орбиты, и их притяжение вытягивает их орбиты в эллипсы. В таком орбитальном резонансе находятся спутники Юпитера, Ио, Европа и Ганимед, их периоды обращения относятся как 1:2:4. Однако приливные силы противостоят вытягиванию их орбит, поэтому конечным результатом борьбы орбитального резонанса с приливом оказывается рассеяние кинетической энергии орбитального обращения спутников в нагрев их недр и постепенное приближение к Юпитеру. Благодаря такому источнику энергии на Ио происходит самый активный вулканизм в Солнечной системе, фонтаны расплавленной серы бьют на сотню километров от ее поверхности.

Другое следствие орбитальных резонансов – так называемые пробелы Кирквуда в поясе астероидов. Разные астероиды имеют самые разные периоды обращения, но таких астероидов, которые бы находились близко к резонансам 2:1, 3:1, 5:2 и 7:3 с Юпитером, нет. Малые тела, которые могли быть на этих орбитах, неизбежно перешли на эллиптические орбиты, близко подходящие к Юпитеру, и были выброшены им из пояса астероидов.

Планеты Солнечной системы в настоящее время не образуют орбитальных резонансов между собой. Астрономы древности приложили много усилий, чтобы найти простую и красивую математическую закономерность в периодах обращения планет вокруг Солнца или в радиусах их орбит, но безуспешно. Теперь мы знаем, что Солнечная система с простыми соотношениями между периодами обращения планет оказывается неустойчива. На языке античной астрономии можно сказать, что музыка сфер способна звучать вечно, только если в ней нет гармоничных созвучий, иначе она начнет быстро меняться. В древней истории Солнечной системы, по-видимому, были периоды орбитальных резонансов между планетами, и они оставили свои следы в ее современном устройстве.

Планеты земной группы

Четыре внутренние планеты Солнечной системы – Меркурий, Венера, Земля и Марс – объединяются в земную группу. Они состоят из металлического ядра и силикатных мантии и коры, в отличие от планет-гигантов. Луна, хотя и не является планетой, по химическому составу также близка к планетам земной группы (рис. 1.2).

Однако по другим параметрам эти планеты сильно различаются между собой (табл. 1.1). Так, Земля имеет азотно-кислородную атмосферу умеренной плотности и большое количество жидкой воды на поверхности. Венера покрыта сверхплотной атмосферой из углекислого газа, которая создает сильнейший парниковый эффект и повышает температуру на поверхности планеты до 460 °C. Воды на Венере нет ни в жидком виде, ни в виде паров в атмосфере. Атмосфера Марса также состоит в основном из углекислого газа, но ее плотность в 5000 раз меньше плотности атмосферы Венеры. Марс отличается холодным климатом, и небольшое количество воды, сохранившееся на нем, находится в твердом виде в полярных шапках и в толще грунта в средних широтах. Меркурий не имеет атмосферы вовсе, температура его поверхности колеблется от –170 на ночной до 400 °C на дневной стороне. Земля обладает достаточно сильным магнитным полем, магнитные поля Марса и Меркурия примерно в 100 раз слабее и не защищают эти планеты от солнечного ветра (потока заряженных частиц из солнечной короны), на Венере магнитное поле не обнаружено. Земля и Марс совершают один оборот вокруг своей оси примерно за 24 часа, тогда как Меркурий и Венера – за 59 и 243 суток соответственно. Все планеты вращаются вокруг своей оси против часовой стрелки, если смотреть с Северного полюса, и только Венера – по часовой стрелке.

Планеты-гиганты

Юпитер является крупнейшей из планет Солнечной системы. Его масса превышает массу всех других планет, спутников, астероидов и комет вместе взятых. Средняя плотность Юпитера составляет 1,3 г/см^3, что означает преобладание легких элементов – водорода и гелия – в составе планеты. Видимая поверхность Юпитера, судя по неравномерным движениям отдельных частей, является плотным слоем облаков, а не поверхностью жидкости или твердого тела. Мощное магнитное поле Юпитера собирает заряженные частицы солнечного ветра с большого объема, их падение на полюса планеты вызывает мощные полярные сияния.

Поделиться:
Популярные книги

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Пожиратель душ. Том 1, Том 2

Дорничев Дмитрий
1. Демон
Фантастика:
боевая фантастика
юмористическая фантастика
альтернативная история
5.90
рейтинг книги
Пожиратель душ. Том 1, Том 2

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2