Чтение онлайн

на главную - закладки

Жанры

Шрифт:

…Вы идёте по лесу и не можете налюбоваться его летним нарядом, наслушаться весёлых птичьих песен. Вокруг всё цветёт, живёт, дышит, напоённое теплом.

А зимой, повторяя тот же маршрут на лыжах, вы находите не менее прекрасный, но совершенно другой мир. Поёживаются от холода деревья, одетые в пушистые снежные шапки. Там, где летом нежно журчал ручей, потрескивает сковавший его лед.

«Хорошо, красиво, — думаете вы, растирая озябшие руки, — но холодно…»

Есть на Земле места, где царит такой мороз, что человек, без предосторожности вдохнувший глоток воздуха, моментально застудит лёгкие. За минуты на таком морозе унты становятся твёрдыми, жидкое топливо становится вязким, железо делается хрупким, а обычная резина

разваливается на мелкие куски…

Как люди могли не задуматься над причиной изменения привычных свойств веществ? Как могли не попытаться разузнать что-либо о законах, правящих в царстве Деда Мороза, о том, что может принести он в дар человеку не в призрачном мире сказки, а в реальной действительности?

А можно ли достичь абсолютного нуля? Можно ли отобрать от частиц вещества всю их тепловую энергию? Наука отвечает на этот вопрос отрицательно. Можно сколько угодно близко подойти к абсолютному нулю температуры, когда до него останутся лишь тысячные доли градуса, но достичь его невозможно. Причиной этому является неотъемлемое внутреннеё движение, присущее материи. Это движение связано с запасами внутренней энергии, полностью уничтожить которые невозможно. Даже в самом пустом пространстве всегда присутствует энергия электромагнитных полей. А вследствие неизбежных связей, существующих между частицами и полями и между отдельными частицами, эти запасы энергии будут переходить в нулевую, остаточную энергию, препятствующую абсолютной неподвижности, а следовательно, и достижению абсолютного нуля температуры.

Достичь абсолютного нуля невозможно, но на пути к нему учёные уже, как вы знаете, встретились с рядом неожиданных, поразительных фактов. Несомненно, много замечательных открытий ещё лежит в неисследованных далях этого пути.

За последние десятилетия рухнула не одна крепость царства мороза. Образовалась целая область науки — физика низких температур. В середине нашего века мы стали свидетелями рождения физики сверхнизких температур. Так учёные называют область, лежащую между десятой долей градуса и абсолютным нулём.

Многие лаборатории мира уже чувствуют себя как дома на этом абсолютном полюсе холода. Здесь особенно удобно исследовать тонкие особенности строения ядер, силы, приводящие к соединению атомов в причудливые конструкции решёток кристаллов, и многие явления, маскируемые тепловым движением материи.

Обнаружив новое явление, поначалу полное таинственности, экспериментаторы обычно не торопятся с выводами и с нетерпением ожидают, что же скажет по этому поводу теория. А бывает и так. Теория предсказывает новый эффект, новое явление, какое-то неожиданное свойство знакомого вещества, но эксперимент столь сложен и тонок, что проходит немало времени, прежде чем утверждения формул получат воплощение в жизни.

Сложная теория и тончайшая, ювелирная точность техники эксперимента — вот особенности этой области физики. Она обогащает не только наши знания о природе веществ, но уже даёт и практический выход.

Охота за тайнами низких температур в полном разгаре.

ПОЧЕМУ ВОЗНИКАЕТ СВЕРХПРОВОДИМОСТЬ?

На предыдущих страницах мы познакомились с историей сверхпроводимости. Замечательным открытием, порождённым извечной любознательностью человека.

«Что будет, если…» — подумал Каммерлинг-Оннес и погрузил сосудик с ртутью в жидкий гелий. И был вознаграждён. Он совершил одно из величайших открытий, обнаружил неведомое. Сверхпроводимость! Он заслуженно получил Нобелевскую премию, но около полувека никто не знал, почему и как вещество внезапно теряет электрическое сопротивление.

В 1935 году физик-теоретик Ф. Лондон предположил, что сверхпроводимость обусловлена квантовыми свойствами вещества. Так впервые была высказана мысль о том, что учёт квантовых закономерностей, управляющих процессами микромира, иногда определяет и закономерности явлений

макромира, в которых участвуют большие коллективы микрочастиц. Он указал, что кусок металла в состоянии сверхпроводимости ведёт себя как огромная молекула. При обычных температурах электроны хаотически и независимо движутся внутри металла. При кратковременном присоединении к нему источника напряжения они приобретают дополнительное коллективное движение. Но оно быстро прекращается вследствие того, что каждый электрон взаимодействует с атомами металла независимо. Результатом является только небольшое нагревание куска металла из-за усиления хаотических тепловых колебаний.

При низкой температуре квантовые свойства вещества допускают объединения электронов в общий коллектив. При этом для отдельного электрона, входящего в коллектив, изменение движения, вызванное его индивидуальным взаимодействием с отдельным атомом, невозможно. А весь коллектив «не реагирует» на такое «индивидуальное» взаимодействие. Здесь входит в действие принцип, действующий в разнообразных ситуациях: в единении сила, в разобщённости слабость.

Фриц Лондон и его брат Гейнц придумали формулы, описывающие главные особенности сверхпроводимости, обусловленной коллективным состоянием электронов. Затем они изучили взаимосвязь между сверхпроводимостью и магнитным полем. Сумели применить сверхпроводимость для создания сильных магнитных полей. Но вопросы — почему и как возникает коллективное состояние электронов? — оставались без ответа. Итог этому раннему периоду в понимании явления сверхпроводимости подвели в 1950 году Гинзбург и Ландау. Они обобщили теорию братьев Лондонов и создали эффективную феноменологическую (описательную) теорию, объясняющую сверхпроводимость как сверхтекучий поток электронов в веществе.

Первый шаг к пониманию деталей, приводящих к возникновению сверхпроводимости, сделал в 1956 году американский физик Л. Купер. Возможно, его подвели к этому идеи советского физика И. Е. Тамма, предположившего, что между двумя одинаковыми частицами может возникнуть притяжение, если они обмениваются между собой третьей частицей. Наглядной иллюстрацией (не имеющей реальной общности с явлениями микромира) могут служить два человека, по очереди кидающие друг другу мяч. Первый кинул — второй поймал. Второй кинул — первый поймал. Издали, когда мяч не виден, создаётся впечатление, что на этих людей действуют какие-то силы, не дающие им далеко отойти друг от друга и мешающие сблизиться вплотную.

Тамм хотел объяснить на этом примере, как возникают силы, удерживающие ядерные частицы внутри ядра, отведя роль «мяча «электрону. Однако расчёт показал, что обмен электронами не связан с силами, действующими в ядре.

В 1935 году японский физик X. Юкава сделал смелый шаг. Он предположил, что ядерные частицы обмениваются не электронами, а другими частицами, примерно в 200 раз более тяжёлыми, чем электрон. Но в то время такие частицы были неизвестны науке. Цифра «200» возникла из требования, чтобы теория соответствовала результатам опыта. Недостаток места не позволяет рассказать здесь увлекательную историю открытия мезона (так назвал Юкава свою гипотетическую частицу). Говоря коротко, первой была открыта частица с массой, примерно соответствующей предсказанию Юкавы, но, как оказалось впоследствии, не имевшая отношения к ядерным силам. Позже мезон Юкавы был обнаружен английским физиком С. Ф. Пауэллом.

Купер предположил, что электроны, участвующие в образовании электрического тока в металлах, тоже действуют по описанной нами схеме: они тоже могут обмениваться между собой своеобразным мячом. Это фононы — кванты звука. Это не частицы, а квазичастицы, вошедшие в науку, когда физики начали углублять теорию распространения звука в кристаллах. Для этого пришлось обратиться к квантовой физике, а она к тому времени установила, что частицы микромира ведут себя в различных опытах то как волны, то как частицы.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5