Чтение онлайн

на главную - закладки

Жанры

Просчитать будущее. Кто кликнет, купит, соврёт или умрёт
Шрифт:

Прогнозирование – в высшей степени непростая задача. Каждый прогноз зависит от множества факторов: широкого разнообразия известных параметров, характеризующих каждого пациента, домовладельца или сообщение по электронной почте, которое может оказаться спамом. Как справиться с этой сложнейшей задачей – соединить вместе все части головоломки для составления конкретного прогноза?

Идея проста, хотя воплотить ее на практике не так просто. Проблема решается путем применения систематического научного подхода для развития и постоянного совершенствования наших умений в области прогнозирования. Другими словами, нам необходимо в буквальном смысле научиться

прогнозировать.

Решение кроется в машинном обучении – компьютеры автоматически приобретают новые знания и способности, жадно поглощая самый ценный и самый мощный неприродный ресурс современного общества: данные.

«Накормите меня!» – пища для размышлений для компьютеров

Данные – это новая нефть.

Меглена Кунева, еврокомиссар по защите прав потребителей

Единственным источником знаний является опыт.

Альберт Эйнштейн

Богу мы верим, все остальные должны предоставлять данные.

Уильям Эдвардс Деминг (американский ученый, известный своей теорией управления качеством)

Большинство людей не испытывают никакого интереса к данным. Что может быть скучнее, чем эти бесконечные массивы сухих цифр и фактов, порой столь банальных, как пост в Twitter типа «Я купил себе новые кроссовки!». Это бесполезный побочный продукт, который в огромных количествах образуется в процессе ведения любого бизнеса.

Вы ошибаетесь! Правда в том, что данные представляют собой бесценное собрание опыта, на котором можно учиться. Каждая медицинская процедура, кредитная заявка, публикация на Facebook, рекомендация фильма, акт мошенничества, спам-сообщение или покупка – каждый положительный или отрицательный результат, каждая успешная или неудачная попытка продажи, каждый инцидент, событие и транзакция – кодируются как данные и сохраняется в базе данных. По оценкам, объемы данных увеличиваются на 2,5 квинтиллиона байтов в день (это единица с 18 нулями). Вот где произошел настоящий Большой взрыв, породив безграничные потоки сырых, необработанных данных, с которыми могут справиться только компьютеры. При правильном использовании компьютеры жадно поглощают этот океан данных – и учатся на них.

Иногда погоня за данными превращается в настоящую золотую лихорадку. Но данные – это не золото. Повторяю, необработанные данные – это сырье. Золото – то, что можно из них добыть.

Процесс машинного обучения на основе данных раскрывает всю мощь этого все возрастающего ресурса. Он позволяет выявить, что движет людьми и их поступками, что цепляет нас за душу и как устроен мир. Получение таких знаний и делает прогнозирование возможным.

Например, благодаря машинному обучению мы получили такие ценные сведения, как [1] :

1

Более подробно об этих примерах читайте в главе 3.

• ранний выход на пенсию уменьшает ожидаемую продолжительность жизни;

• люди, которых на сайтах знакомств чаще отмечают как привлекательных, вызывают меньше интереса;

• большинство фанатов Рианны по своим политическим убеждениям – демократы;

• вегетарианцы реже пропускают авиарейсы;

• количество преступлений на местном уровне увеличивается после публичных спортивных мероприятий.

Машинное обучение опирается на подобные знания, чтобы совершенствовать прогнозные возможности систем через процесс обработки больших объемов данных по методу проб и ошибок, уходящий корнями в статистику и компьютерную науку.

Я знал, что вы это сделаете

Располагая такими возможностями, что мы хотели бы спрогнозировать? Фактически все, что делает человек, стоит того, чтобы стать предметом прогнозирования, – а именно то, как мы потребляем, думаем, работаем, уходим, голосуем, любим, воспроизводим потомство, разводимся, создаем проблемы, обманываем, воруем, убиваем или умираем. Давайте рассмотрим некоторые примеры [2] .

2

Больше примеров и дополнительных деталей вы найдете в таблицах в приложении D.

Потребление

• Голливудские киностудии, принимая решение о производстве фильмов, прогнозируют их успех.

• Американский сервис Netflix заплатил $1 млн группе ученых, которым удалось лучше других усовершенствовать способность его системы рекомендаций прогнозировать, какие фильмы должны понравиться его пользователям.

• Австралийская энергетическая компания Energex прогнозирует спрос на электроэнергию для принятия решений о том, где строить собственные электросети, а компания Con Edison – возможные сбои системы в случае повышения уровня энергопотребления.

• Уолл-стрит прогнозирует цены акций, наблюдая за их движением под влиянием динамики спроса. Такие фирмы, как AlphaGenius и Derwent Capital, управляют торговыми операциями своих хедж-фондов, отслеживая тренды и настроения широкой общественности через посты на Twitter.

• Компании – от гиганта U. S. Bank до небольших фирм, таких как Harbor Sweets (производитель сладостей) и Vermont Country Store («классические продукты высокого качества, которые трудно найти»), – прогнозируют, какие клиенты будут покупать их продукцию, чтобы нацелить на них свои маркетинговые усилия. Эти прогнозы диктуют распределение драгоценных маркетинговых бюджетов. Некоторые компании в буквальном смысле прогнозируют даже то, как наилучшим образом повлиять на вас, чтобы заставить покупать еще больше (эта тема рассматривается в главе 7).

• Прогнозирование определяет и то, какие купоны вы получаете в кассе супермаркетов. Британский розничный гигант Tesco, третья по величине сеть продуктовых магазинов в мире, прогнозирует эффективность этого целевого маркетинга и ежегодно распределяет более 100 млн персонализированных скидочных купонов в 13 странах мира. Благодаря прогнозированию уровень использования купонов вырос в 3,6 раза по сравнению с предыдущими программами. Аналогичным образом поступают Kmart, Kroger, Ralph’s, Safeway, Stop & Shop, Target и Winn-Dixie.

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи