Путь к звездам (сборник)
Шрифт:
Когда почти вся жидкость перейдет из переднего сосуда (паровика) в задний (холодильник), то сосуд переворачивают холодильником к Солнцу, а паровиком — к темному небесному пространству. Одним словом, роли совершенно одинаковых главных частей прибора меняются (автоматически) примерно каждый час, смотря по объему котлов. Последние, конечно, составлены из трубок, как ковры из нитей. Утериваться жидкости не могут, так как все плотно прикрыто от утечки пара.
Мы не можем теперь сказать, какого рода двигатели будут в употреблении. Вероятно, очень многих сортов и систем, чего теперь предвидеть невозможно.
Котлы могут иметь поверхность любой величины, так как тяжесть этому не препятствует.
Сущность заводской промышленности состоит в следующем.
А. Из минералов добывают их составные элементарные части, например газы, жидкости, металлоиды и металлы.
Б. Из элементов составляют необходимые или полезные нам соединения, например газы, духи, краски, лекарства, питательные вещества, кислоты, щелочи, соли, удобрения, сплавы и проч. (и элементы, и нужные соединения иногда находят готовыми в природе).
В. Сплавам или другим строительным и вообще твердым веществам придают необходимую форму, например, орудий, машин, утвари, научных приборов, бумаги, тканей, одежд, скафандров, жилищ, заводов и т. д.
Для всего этого (А, Б, В) на Земле служат следующие средства: повышение или понижение температуры и давления, электричество, катализаторы (незначительная примесь разных веществ, способствующих химическому процессу), механические силы.
Без орудий, конечно, дело не обходится. Их готовые образцы уже имеются на Земле и ими же воспользуются вне атмосферы…
Сначала у людей не было орудий, как у животных, потом были очень простые. С помощью этих примитивных, были построены получше. Из лучших — еще лучшие и т. д., пока не добрались до теперешних, возбуждающих в нас глубокое изумление и восторг. Прогресс их никогда не закончится, а в эфире он уклонится в сторону, сообразно новым условиям…
Известно, как на Земле получается повышение температуры. Но нам здесь, в эфире, эти средства не нужны, кроме исключительных случаев. Тут повышение всегда можно получить силою солнечных лучей, — очень экономно и любой степени, — от 273° холода до температуры Солнца.
Для получения низшей температуры защищаются от светила блестящими экранами и пользуются лучеиспусканием черных тел в небесное пространство. При этом получают температуру в 273° холода.
Наиболее экономное нагревание, примерно, таково. Камера желаемой величины и формы закрыта со всех сторон, в несколько слоев, хорошо отражающими лучи поверхностями. Так сохраняется теплота внутри камеры, отражается обратно внутрь ее, и температура почти не понижается, как бы ранее высока ни была. Это есть подобие термоса, но только гораздо более совершенного, чему способствует несколько оболочек и отсутствие кругом материальной среды, например воздуха.
Теплота Солнца проникает в камеру через небольшое отверстие. Параболическое зеркало сзади камеры (размерами больше камеры) собирает лучи Солнца в небольшую фокусную группу, как раз величиною в отверстие помещения. Здесь лучи расходятся и нагревают пространство внутри камеры до температуры Солнца, как бы ни было мало зеркало. Но это при идеальных условиях: при полном сохранении тепла, при точкообразном отверстии и при совершенстве отражающих зеркал. На деле ничего этого нет, и потому нагревание только тогда близко к температуре Солнца, когда размер зеркала во много раз больше размера камеры. Потом, некоторое неизбежное нагревание ее стенок ухудшает отражающую их способность и также мешает получению температуры Солнца, т. е. 5-10 тысяч градусов тепла.
В фокусе параболического зеркала получается изображение Солнца. Чем оно меньше, тем меньше отверстие камеры, тем меньше будет потеря тепла и тем выше температура камеры. Но, с другой стороны, приход тепла пропорционален поверхности зеркала. Положим, что радиус
Вообразим для простоты зеркало круглым, как блюдечко. Оно составляет часть шаровой поверхности. Проведем из центра воображаемого шара радиус к ободкам зеркала (блюдечка). Получим угол. Этот угол не может быть больше 180° (полсферы). Но такой большой угол почти бесполезен, так как захватывает лучей немного более, чем зеркало с углом в 90°, даже 60°. Последний угол мы и примем для зеркал всех размеров. Их поперечник всегда будет равен радиусу. Так, если радиус зеркала будет 100 м, то ширина зеркала будет тоже 100 м, а размер изображения = 430 мм. Он всегда в 233 раза меньше ширины зеркала. Представляя камеру полным шаром, найдем, что практическая ширина зеркала не менее удвоенного диаметра камеры. Если, например, камера в 1 м, то размер зеркала не менее 2 м. Четвертая доля его поверхности будет в тени от камеры. Поэтому его можно делать кольцеобразным. Но и пропавшую 1/4 долю энергии Солнца можно утилизировать посредством двояковыпуклого стекла или особых зеркал. И то и другое будет впереди камеры, ближе к Солнцу.
Зеркала могут быть громадных размеров, так как и при тонкой их поверхности и малой массивности они целы, не гнутся от тяжести, которой нет. Для более правильной формы им полезно придать слабое вращение вместе с камерой, с которой зеркало составляет одно целое.
Такими приборами, в связи с давлением и катализаторами, пользуются для завершения каких-либо химических процессов, требующих определенной температуры. Последнюю легко регулировать величиною поверхности зеркала и разного рода заслонами. Если требуется еще и определенное давление, то отверстие приходится плотно закрывать прозрачным для лучей заслоном. Но теми же камерами можно пользоваться для нагревания готовых сплавов с целью их отливки, прессования и кования — для придания желаемых форм.
Теперь обратимся к механическому воздействию для обработки холодных или подогретых, твердых и полутвердых материалов. Мы уже говорили о простоте устройства моторов, каждый м 2поверхности которых дает одну силу. Для получения ее, конечно, можно применять и зеркала, и химические процессы. Значит, механической энергии сколько угодно. (Ее же легко преобразовывать известными способами в электрическую, — если нельзя этого делать непосредственно солнечной радиацией. Электрическая же энергия высокого потенциала, как известно, может давать температуру выше солнечной.)