Путешествия в космос
Шрифт:
Все, что сказано здесь о «кеворите», равно относится и к этой так называемой «минус-материи». Ее существование — досужий вымысел романиста. Поэтому все предположения о возможности совершения космических полетов с помощью «кеворита» или «минус-материи» надо считать чисто фантастическими.
Нет возможностей нейтрализовать силу тяжести. Значит, надо ее преодолеть.
СКОРОСТЬ ПРОТИВ ПРИТЯЖЕНИЯ
Бросьте вверх камень. Поднявшись на 15–20 метров, он на мгновение остановится, а затем начнет падать вниз. Бросьте камень сильнее, придайте ему большую скорость. Он взлетит выше. Чем с большей
Да, можно.
У Ньютона в книге о притяжении есть такое рассуждение.
Предположим, что на очень высокой горе, такой высокой, что ее вершина находится уже вне атмосферы, мы установили гигантское артиллерийское орудие. Ствол его расположили строго параллельно поверхности земного шара и выстрелили. Описав дугу, ядро падает на Землю. Увеличиваем заряд, улучшаем качество пороха, тем или иным способом заставляем ядро после следующего выстрела двигаться с большей скоростью. Дуга, описанная ядром, становится более пологой. Ядро падает значительно дальше от подножия нашей легендарной горы.
Еще увеличиваем заряд и стреляем. Ядро летит по такой пологой траектории, что оно движется параллельно поверхности земного шара.
Ядро в этом случае уже не может упасть на Землю. И описав окружность вокруг нашей планеты, ядро возвращается к точке вылета.
Орудие можно тем временем снять. Ведь полет ядра вокруг земного шара займет свыше часа. И тогда ядро стремительно пронесется над вершиной горы и отправится в новый облет Земли. Упасть, если, как мы условились, ядро не испытывает никакого сопротивления воздуха, оно не сможет никогда.
Скорость ядра для этого должна быть близкой к 8 километрам в секунду.
А если мы еще увеличим скорость полета ядра?
Оно сначала полетит по дуге, более пологой, чем кривизна земной поверхности, и начнет удаляться от Земли. При этом скорость его под влиянием притяжения Земли будет уменьшаться. И наконец, повернувшись, оно начнет как бы падать обратно на Землю, но пролетит мимо нее и замкнет уже не круг, а эллипс. Ядро будет двигаться вокруг Земли точь-в-точь так же, как Земля движется вокруг Солнца: по эллипсу, в одном из фокусов которого будет наша планета.
Если мы еще увеличим начальную скорость ядра, эллипс получится более растянутый. Можно так «растянуть» этот эллипс, что ядро долетит до лунной орбиты или даже еще дальше.
Но до тех пор, пока его начальная скорость не превысит 11,2 километра в секунду, оно будет оставаться спутником Земли.
Ядро, получившее при выстреле скорость свыше 11,2 километра в секунду, навсегда улетит с Земли по параболической траектории. Если эллипс — замкнутая кривая, то парабола — кривая не замкнутая. Двигаясь по эллипсу, каким бы вытянутым он ни был, мы неизбежно будем систематически возвращаться к исходной точке. Двигаясь по параболе, в исходную точку мы никогда не вернемся: обе ее ветви уходят в бесконечность.
Но, покинув Землю с этой скоростью, ядро еще не сможет улететь в бесконечность. Могучее тяготение Солнца изогнет траекторию его полета, замкнет вокруг себя, наподобие траектории планеты. Ядро станет самостоятельной крохотной планеткой в семье планет солнечной системы.
Скорость около 8 километров в секунду (эта скорость зависит от высоты «горы», с которой стреляет наша пушка) называется круговой скоростью. Скорости от 8 до 11,2 километра в секунду являются эллиптическими; скорость 11,2 — параболическая; свыше 11,2 — скорости гиперболические.
Для того чтобы направить наше ядро за пределы солнечной системы, чтобы преодолеть солнечное притяжение, надо сообщить ему скорость свыше 16,7 километра в секунду.
Здесь же следует добавить, что приведенные значения этих скоростей справедливы только для Земли. Если бы мы жили на Марсе, круговая скорость была бы для нас достижима значительно более легко: она там составляет всего около 3,6 километра в секунду, а параболическая — лишь незначительно превосходит 5 километров в секунду. Зато отправить ядро в космический рейс с Юпитера было бы значительно труднее, чем с Земли: круговая скорость на этой планете равна 42,2 километра в секунду, а параболическая — даже 61,8 километра в секунду!
Мысленно установив на вершине горы орудие, будем стрелять из него, все увеличивая пороховой заряд, а вместе с этим и скорость вылетающего снаряда. Все более пологой будет становиться его траектория, и, наконец, снаряд ляжет на круговую орбиту — превратится в искусственный спутник Земли. Дальнейшее увеличение скорости превратит круговую орбиту в эллиптическую, а затем, разорвав ее, отправит снаряд в безвозвратный космический рейс.
ИЗ ПУШКИ НА ЛУНУ
Итак, чтобы отправиться в космический рейс, надо сообщить кораблю, как минимум, круговую скорость. Но задача вообще-то, конечно, значительно сложней. Ведь приведенные элементарные расчеты не учитывают сопротивления атмосферы полету, а оно при больших скоростях очень значительно.
Каким же образом придать космическому кораблю такую колоссальную скорость?
Выстрелить им из пушки — таков был самый первый ответ.
Знаменитый французский писатель Жюль Верн этим способом отправил в путешествие вокруг Луны своих героев, членов Пушечного клуба Барбикена, Николя и Мишеля Ардана. Для этой цели была сооружена гигантская, врытая в землю пушка длиной около 300 метров и диаметром около 2,5 метра. Заряд ее содержал свыше 150 тонн пироксилина. Этого, по мнению Жюля Верна, было достаточно для того, чтобы добросить снаряд до Луны, сообщив ему необходимую скорость.
Гениальный романист ошибался, как ошибались многие в его время и даже значительно позже него. Точные расчеты убеждают, что с помощью известных нам сегодня взрывчатых веществ (кроме атомных) сообщить снаряду космическую скорость посредством выстрела из пушки невсзможно.
Представим себе, что мы в абсолютной пустоте взорвали кусок очень сильного взрывчатого вещества, мгновенно превратили его из твердого состояния в газ, занимающий тот же самый объем. Этот газ, имеющий в первоначальный момент чрезвычайно высокую температуру и давление, начинает стремительно расширяться, его частицы разлетаются в разные стороны. Они, не встречая никакого препятствия на своем пути, будут двигаться с максимальной скоростью, которую может сообщить заключенная в них энергия. Но эта скорость будет еще очень далека от космической. Она не сможет превзойти 3,5 километра в секунду.