Пять возрастов Вселенной
Шрифт:
По истечении миллиона лет и многих стопок бумаги Корнелий достиг эпохи звезд — времени, когда звезды активно рождаются, проживают свои жизненные циклы и вырабатывают энергию посредством ядерных реакций. Эта яркая глава закрывается, когда в галактиках заканчивается водородный газ, прекращается образование звезд и медленно угасают самые долго живущие красные карлики.
Печатая без остановки, Корнелий вводит свою историю в эпоху распада, с ее коричневыми карликами, белыми карликами, нейтронными звездами и черными дырами. Посреди этой замерзшей пустыни темная материя медленно собирается внутри мертвых звезд и аннигилирует в излучение, которое питает космос. Распад протона выходит на сцену в конце этой главы, когда медленно утекает масса-энергия вырожденных остатков звезд, а жизнь, основанная
Когда усталый автор продолжает свой труд, единственными героями его повествования остаются черные дыры. Но и черные дыры не могут жить вечно. Испуская слабый как никогда свет, эти темные объекты испаряются в ходе медленного квантово-механического процесса. В отсутствие другого источника энергии Вселенная вынуждена довольствоваться этим скудным количеством света. После испарения самых крупных черных дыр переходные сумерки эпохи черных дыр сдаются под натиском еще более глубокой черноты.
В начале заключительной главы у Корнелия заканчивается бумага, но не время. Во Вселенной больше нет звездных объектов, а только бесполезные продукты, оставшиеся от предыдущих космических катастроф. В эту холодную, темную и очень далекую эпоху вечной тьмы космическая деятельность заметно замедляется. Чрезвычайно низкие уровни энергии согласуются с огромными промежутками времени. После своей огненной юности и полного энергии среднего возраста теперешняя Вселенная медленно вползает в темноту.
По мере старения Вселенной ее характер постоянно меняется. На каждом этапе своей будущей эволюции Вселенная поддерживает удивительное разнообразие сложных физических процессов и другое интересное поведение. Наша биография Вселенной, от ее рождения во взрыве до долгого и постепенного скольжения в вечную тьму, основана на современном понимании законов физики и чудес астрофизики. Благодаря обширности и обстоятельности современной науки, это повествование представляет самое вероятное видение будущего, которое мы можем составить.
Безумно большие числа
Когда мы обсуждаем обширный диапазон экзотического поведения Вселенной, возможного в будущем, читатель может подумать, что произойти может вообще все, что угодно. Но это не так. Несмотря на изобилие физических возможностей, на самом деле произойдет лишь крошечная доля теоретически возможных событий.
Прежде всего, на любое разрешенное поведение строгие ограничения накладывают законы физики. Должен соблюдаться закон сохранения общей энергии. Не должен нарушаться закон сохранения электрического заряда. Основной направляющей концепцией является второй закон термодинамики, который формально гласит, что общая энтропия физической системы должна возрастать. Грубо говоря, этот закон предполагает, что системы должны эволюционировать в состояния увеличения беспорядка. На практике второй закон термодинамики заставляет тепло переходить от горячих объектов к холодным, а не наоборот.
Но даже в рамках процессов, разрешенных законами физики, многие события, которые могли бы произойти в принципе, на деле никогда не происходят. Одна общая причина состоит в том, что они просто требуют слишком долгого времени, и первыми происходят другие процессы, которые их опережают. Хорошим примером этой тенденции служит процесс холодного синтеза. Как мы уже отмечали в связи с ядерными реакциями в недрах звезд, самым стабильным из всех возможных ядер является ядро железа. Множество более мелких ядер типа водорода или гелия отдали бы свою энергию, если бы могли объединиться в ядро железа. На другом конце периодической таблицы более крупные ядра типа урана тоже отдали бы свою энергию, если бы их можно было разделить на части, а из этих частей составить ядро железа. Железо представляет собой самое низкоэнергетическое состояние, доступное ядрам. Ядра стремятся к пребыванию в форме железа, но энергетические барьеры препятствуют тому, чтобы это преобразование могло легко произойти при большинстве условий. Чтобы преодолеть эти энергетические барьеры, как правило, нужны либо высокие температуры, либо продолжительные промежутки времени.
Рассмотрим большой кусок твердого вещества типа камня или, быть может, планеты. Структура этого твердого тела не изменяется благодаря
Сколько времени заняла бы подобная реструктуризация ядер? Ядерная активность такого типа преобразовала бы ядра камня в железо примерно за пятнадцать сотен космологических декад. Если бы произошел этот ядерный процесс, в космос была бы испущена избыточная энергия, потому что ядра железа соответствуют более низкому энергетическому состоянию. Однако этот процесс холодного ядерного синтеза никогда не будет доведен до конца. Он даже никогда по-настоящему не начнется. Все протоны, составляющие ядра, распадутся на меньшие частицы много раньше, чем ядра преобразуются в железо. Даже самое длинное возможное время жизни протона составляет менее двухсот космологических декад — много короче огромного промежутка времени, необходимого для холодного синтеза. Другими словами, ядра распадутся прежде, чем у них появится шанс превратиться в железо.
Другой физический процесс, требующий слишком долгого времени, чтобы считаться важным для космологии, — это туннелирование вырожденных звезд в черные дыры. Поскольку черные дыры — это самые низкоэнергетические состояния, доступные звездам, вырожденный объект типа белого карлика имеет большую энергию, чем черная дыра той же массы. Таким образом, если бы белый карлик мог самопроизвольно преобразоваться в черную дыру, он высвободил бы лишнюю энергию. Однако обычно подобного преобразования не происходит из-за энергетического барьера, создаваемого давлением вырожденного газа, который поддерживает существование белого карлика.
Несмотря на энергетический барьер, белый карлик мог бы преобразоваться в черную дыру посредством квантово-механического туннелирования. Из-за принципа неопределенности все частицы (10 57или около того), составляющие белый карлик, могли бы оказаться в пределах столь малого пространства, что образовали бы черную дыру. Однако это случайное событие требует чрезвычайно длительного времени — порядка 10 76космологических декад. Преувеличить воистину огромный размер 10 76космологических декад — невозможно. Если этот необъятно большой промежуток времени записать в годах, получится единица с 10 76нулями. Мы могли бы даже не начинать записывать это число в книге: оно имело бы порядка одного нуля на каждый протон в видимой современной Вселенной, плюс-минус пару порядков величины. Нет нужды говорить, что протоны распадутся и белые карлики исчезнут задолго до того, как Вселенная достигнет 10 76– й космологической декады.
Что же на самом деле происходит в процессе долгосрочного расширения?
Хотя многие события фактически невозможны, остается обширный диапазон теоретических возможностей. Самые обширные категории будущего поведения космоса основаны на том, является ли Вселенная открытой, плоской или замкнутой. Открытая или плоская Вселенная будет расширяться вечно, тогда как замкнутая Вселенная переживет повторное сжатие по истечении некоторого определенного времени, которое зависит от исходного состояния Вселенной. Однако рассматривая более спекулятивные возможности, мы обнаруживаем, что будущая эволюция Вселенной может оказаться гораздо сложнее, чем предполагает эта простая классификационная схема.