Радио?.. Это очень просто!
Шрифт:
Н. — Но ведь колебательный контур может иметь только одну частоту, как же мы можем при желании слышать различные передачи?
Л. — Настраиваясь на различные частоты. Чтобы изменить резонансную частоту, достаточно изменить величину индуктивности или емкости контура. Разве ты не видишь, что на рис. 23 конденсатор С перечеркнут стрелкой? На схемах стрелка показывает обычно, что данная величина является переменной. В этом
Н. — Следовательно, в антенне имеется много токов различной частоты, но, изменяя емкость конденсатора, мы настраиваем колебательный контур на нужную нам частоту и тем самым как бы «ловим» нужную станцию. Между точками А и Б появляется переменное напряжение, но… что с ним происходит дальше?
Л. — Это напряжение обычно очень слабое. Его надо усилить, прежде чем использовать для дальнейших преобразований. Именно для усиления и используют радиолампы, тайны которых мы исследуем в следующий раз.
Беседа седьмая
Чтобы понять радио, важно прежде всего узнать устройство многоэлектродной лампы, которая в радиотехнических устройствах является «мастером на все руки». Верный своему обещанию, Любознайкин приступает к изложению самого основного — рассказывает о свойствах наиболее простых ламп: диода и триода. Так Незнайкин узнает о значении катода, анода и сетки.
Незнайкин. — Так как прошлый раз ты обещал мне рассказать о радиолампах, я уже немного изучил материалы по этому вопросу. Из словаря я узнал, что эти лампы называют электронными лампами.
Любознайкин. — Отлично, Незнайкин! Теперь ты достаточно осведомлен!.. Чтобы дополнить сведения, полученные из словаря, мне остается добавить, что электроны играют важную роль в радиолампах.
Н. — Не издевайся надо мной, Любознайкин. Что делают электроны в лампах?
Л. — Электроны испускаются (эмитируются) катодом и, пройдя в вакууме через одну или несколько сеток, притягиваются анодом.
Н. — Час от часу не легче! Катод, анод, сетка… это все равно, что объяснить мне на санскритском языке интегральное исчисление.
Л. — Начнем с азов. Ты знаешь, что такое теплота?
Н. — Мой учебник физики скромно намекает, что теплота — это не что иное, как быстрое и беспорядочное движение молекул, т. е. элементарных частиц тела.
Л. — А что происходит с электронами в молекулах нагретого тела?
Н. — Я думаю, что эти электроны могут уподобиться пассажирам, сидящим в автомобиле, который катится с огромной скоростью, делая сумасшедшие зигзаги. Электроны-путешественники испытывают тряску и ужасно от этого страдают.
Л. — Наука не располагает сведениями о моральном состоянии электронов…, но ты прав, говоря, что они испытывают сильную тряску. Представь, что температура тела очень высока…
Н. —
Л. — Это называется электронной эмиссией тела. Если раскалить металлическую проволоку, то из нее хлынет поток электронов. Имеются окиси металлов, у которых электронная эмиссия начинается даже при относительно низкой температуре нагрева.
Н. — Это происходит, видимо, потому, что в этих окисях электроны-пассажиры не держатся крепко за борта своих автомобилей. Но скажи, каким способом ты предполагаешь нагревать металл, чтобы получить электронную эмиссию?
Л. — Для этого могут быть использованы все средства нагрева газ, керосин, уголь, электричество.
Н. — Постой, постой! Я не знал, что радиолампы нагревают на керосинке.
Л. — В действительности катод (так называют в лампе электрод, служащий источником электронной эмиссии) всегда нагревают электрическим током. Но этот ток накала играет вспомогательную, второстепенную роль и может быть заменен другим источником тепла.
В современных лампах нить накала похожа на нить в осветительной лампе и накаливается проходящим по ней током (постоянным или переменным — это безразлично). Нить накала скрыта в фарфоровом цилиндре, через который тепло передается никелевой трубке, плотно прилегающей к фарфоровому цилиндру. Поверхность никелевой трубки покрыта слоем, состоящим из различных окисей, который собственно вместе с никелевой трубкой и является катодом, эмитирующим электроны (рис. 24).
Рис. 24. Составные части подогревного катода.
1 — нить накала, 2 — фарфоровый цилиндр, 3 —никелевая трубка, покрытая активным слоем.
Н. — Словом, что электрическая плитка, на которой стоит чайник, из которого вырывается электронный пар.
Л. — Сравнение мне нравится. Теперь заметь, что электроны, вылетающие из катода, не могут уйти очень далеко, если тотчас же встретят на своем пути молекулы воздуха. Чтобы дать им возможность свободно перемещаться, катод помещают в стеклянную колбу, из которой удален воздух.
Н. — Но куда по-твоему должны идти электроны?
Л. — Сейчас мы устроим в лампе ловушку для электронов. Это цилиндр, расположенный на некотором расстоянии вокруг катода (рис. 25). Зарядим его положительно относительно катода с помощью батареи.
Рис. 25. Диод.