Радио и телевидение?.. Это очень просто!
Шрифт:
Л. — Эти изменения громкости называются «фединг», что означает замирание. А вызывается это явление тем, что одновременно принимаются волны, излучаемые одним и тем же передатчиком, но доходящие до приемника по различным путям.
Примером может служить случай приема прямой и отраженной волн, что часто случается при приеме СВ. Эти волны способны огибать часть поверхности земного шара, если передатчик имеет достаточно большую мощность. На некотором расстоянии принимают одновременно прямую волну и волну, отраженную ионосферой. Пройденное ими расстояние неодинаково; отраженная волна проделала путь значительно больший, чем прямая (рис. 111).
Рис. 111. Волна
Н. — Прости, что перебиваю тебя, но мне кажется, что теперь я понимаю причины замирания. Когда волны приходят на приемную антенну в фазе, все идет хорошо. Наводимые ими токи складываются, и прием происходит хорошо. Однако, если отраженная и прямая волны оказываются не в фазе, наводимые в антенне токи мешают друг другу. А если волны находятся явно в противофазе, токи взаимно уничтожаются. Не в этом ли кроется причина замирания?
Л. — Ты превосходно уяснил эту причину.
Н. — Однако не вижу, как происходит замирание на КВ, излучаемых очень далекими передатчиками. Ты сказал, что эти волны не способны огибать поверхность земного шара. В этом случае мы принимаем только отраженные волны. И я напрасно ломал себе голову — я не вижу, что здесь может вызывать замирание.
Л. — Причина кроется в одновременном приеме волн, которые отразились между ионосферой и Землей разнос количество раз (рис. 112).
Рис. 112. Одновременный прием двух волн, исходящих из одного передатчика, но отраженных неодинаковое количество раз в ионосфере (здесь 1 и 2 раза).
Н. — Понял, но как объяснить характеризующие замирание изменения? Разве длина пути, проходимого отраженными волнами, изменяется?
Л. — И еще как! Не нужно думать, что ионосфера похожа на твердое зеркало. Она колеблется, ее высота изменяется в зависимости от направления солнечных лучей, а ее поверхность далеко не однородна. Вот почему сдвиг по фазе принимаемых одновременно волн тоже быстро или медленно изменяется.
Принцип действия системы автоматической регулировки усиления
Н. — У меня возник вопрос, нельзя ли во избежание неприятного явления замирания воспользоваться направленным приемом?
Л. — Это, несомненно, возможно. И для установления постоянной связи между двумя точками на земном шаре применяют направленные антенны как при передаче, так и при приеме. Однако в радиовещании такой способ рекомендовать нельзя. Для того чтобы радиостанцию могли
Н. — Иначе говоря, мы должны терпеть замирания, так как воспрепятствовать им не можем?
Л. — Успокойся, Незнайкин. Все приемники оснащены антифединговым устройством, которое называется также автоматической регулировкой усиления (АРУ). Это устройство позволяет избежать воздействия замирания на громкость звучания громкоговорителя. АРУ изменяет чувствительность приемника, уменьшая ее при увеличении мощности принимаемых волн и повышая, когда замирание ослабляет принимаемые волны.
Н. — Как я понял, это устройство воздействует на лампы в УВЧ и УПЧ, от которых зависит чувствительность приемника? И если это так, то воздействует ли оно на характеристики ламп?
Л. — На оба твои вопроса я отвечаю утвердительно. Да, устройство воздействует на усиление этих ламп. Величина же усиления в основном зависит от крутизны. Поэтому для достижения поставленной цели применяют лампы с переменной крутизной.
Переменная крутизна
Н. — Как же можно изменять крутизну? Ведь ты объяснил мне, что на сетки ламп подается такое смещение, чтобы рабочая точка лампы находилась на прямолинейном участке кривой, характеризующей изменение анодного тока в зависимости от потенциала сетки. А я знаю, что, если рабочая точка расположена на нижнем изгибе характеристики, лампа совершенно не усиливает, а детектирует.
Л. — Все это, мой дорогой друг, правильно, когда мы имеем дело с лампами, обладающими прямолинейной характеристикой, о чем ты только что сказал. А для обеспечения АРУ используют лампы с переменной крутизной. Кривая… есть кривая.
Как ты видишь, по мере того как отрицательный потенциал рабочей точки становится меньше, крутизна повышается. В точке В она выше, чем в точке А (рис. 113). Кривизна характеристики, однако, очень плавная, в результате чего небольшой участок этой кривой практически не отличается от отрезка прямой линии. Следовательно, колебания с малой амплитудой напряжения Uc не способны вызвать искажений анодного тока.
Рис. 113. Характеристика с переменной крутизной позволяет при разных амплитудах напряжения на сетке получить одинаковые амплитуды анодного тока. Для этого перемещают рабочую точку, изменяя потенциал сетки.
Н. — Так вот в чем дело! Благодаря рисунку, который ты мне показал, я понял, что происходит. В точке А с малой крутизной ты прилагаешь напряжение с большей амплитудой, чем в точке В, где крутизна выше. И оба напряжения на сетке порождают колебания анодного тока с одинаковыми амплитудами. Я предполагаю, что проблема решается путем перемещения рабочей точки в зависимости от амплитуды колебаний, поступающих на вход приемника. Чем слабее эти колебания, тем сильнее они сдвигают рабочую точку вправо, чтобы более высокая крутизна обеспечила лучшее усиление.