Радиоэлектроника-с компьютером и паяльником
Шрифт:
Задача, по сути, делится на две части: 1) моделирование работы системы управления в виде виртуальной схемы; 2) моделирование картины развертки луча.
Первая часть стандартно, как и ранее, решается средствами EWB. На рис. 141 показана полная модель, содержащая компоненты, используемые в наборе Мастер КИТ NK300, с максимальным сохранением их позиционных обозначений и номиналов; изменения и добавленные элементы будут откомментированы ниже.
< image l:href="#"/>Рис. 141. Виртуальная модель в EWB лазерного эффекта Мастер
Для управления частотой вращения двигателей в схеме использована транзисторная сборка (VT1-VT4), помещенная в стандартный DIP-корпус. Выводы в этой сборке на рис. 141 имеют, соответственно, номера узлов 1-14. На транзисторах VT1, VT2, включенных по схеме с общим эмиттером, собрана балансная схема, к которой подключен двигатель М2, аналогично — на транзисторах VT3, VT4 — двигатель М1. В комплекте используются двигатели постоянного тока с возбуждением от постоянных магнитов. В модели мы применили подобные двигатели, но цепи их возбуждения «запитали» от отдельных источников ЕМ1 и ЕМ2, которых, конечно, на самом деле нет в реальном устройстве.
Выбор параметров двигателей (рис. 142) выполнен в соответствии с примером для электродрели (см. рис. 100, в), но, естественно, величины отличаются.
Рис. 142. Выбор параметров двигателей виртуальной модели в EWB лазерного эффекта Мастер КИТ NK300
Вольтметры, условно подключенные к валу, как и прежде в модели дрели, играют роль тахометров: одному вольту на их шкале соответствует один оборот вала в минуту. Потенциометры Р1 и Р2, управляемые соответственно клавишами X и Y, изменяют в балансных схемах напряжение на якоре двигателей, что позволяет регулировать частоту их вращения независимо друг от друга. Это легко пронаблюдать на вольтметрах-тахометрах, включив моделирование и нажимая на клавиатуре X и Y, для уменьшения скорости или совместно с клавишей Shift — для ее увеличения.
Решение второй части задачи может быть проведено аналитически с использованием законов геометрической оптики и кинематики, а картина в виде графиков выведена на дисплей в любом математическом пакете. Возможно, кого-то это и заинтересует, но мы поступим по-иному.
Используем то обстоятельство, что проекция на вертикальный экран светящейся точки, вращающейся по окружности в другой плоскости, перпендикулярной первой, совершает колебания по отрезку прямой. При равномерном вращении с некоторой угловой скоростью это будут гармонические колебания с такой же угловой частотой и амплитудой, равной радиусу (при плоскопараллельном проектировании). Если плоскость колебаний вертикальна, то и светящаяся линия на экране — вертикальна. Если же плоскость колебаний горизонтальна, то и линия на экране — горизонтальна. Наконец, если точка будет участвовать одновременно в этих двух движениях, то колебания на экране будут при равных частотах иметь вид окружности, эллипса или прямой линии с разными наклонами, зависящими от начальных фаз.
Этот случай сложения взаимно перпендикулярных колебаний обычно используется в радиолюбительской практике для определения разности фаз электрических колебаний, подаваемых на вертикальные и горизонтальные отклоняющие пластины осциллографа. Если частоты складываемых колебаний не равны, но кратны друг другу, то получаются известные фигуры Лиссажу.
Поскольку нас интересует качественная картина, то модель (см. рис. 141), дополнена двумя преобразователями частоты F1 и F2. Входы преобразователей подключены к тахометрам, а выходы, соответственно, к входам А и В двухканального осциллоскопа, чем и завершается построение модели. Преобразователи частоты находятся в основной группе компонентов Basic и по-английски называются Voltage-Controlled Sine Wave Oscillator, т. е. управляемый напряжением генератор синусоидальных колебаний. В качестве параметров этих приборов примем те, которые стоят в меню их свойств по умолчанию. Необходимые установки осциллоскопа и получающаяся картина показаны на рис. 143, а.
Эта картина соответствует развертке двух независимо колеблющихся точек. Для сложения колебаний перейдем от временной развертки Y/T к развертке одного луча относительно другого, например, В/А. Это и будут искомые колебания (рис. 143, б).
Изменяя значения частоты вращения двигателей потенциометрами Р1 и Р2, можно наблюдать различные картины колебаний (рис. 143, в, г), которые показаны на экране осциллоскопа, переключенного в режим Expand.
Рис. 143. Картины на осциллоскопе в модели лазерного эффекта Мастер КИТ NK300
Самостоятельно можно изменить настройки преобразователей частоты, что отражает изменение настройки оптико-механической развертки луча, и наблюдать гораздо более замысловатые картины.
Здесь необходимо также заметить, что картина на экране осциллоскопа в модели накапливается за много проходов луча, тогда как в реальном устройстве этого не происходит, если только частота развертки не будет слишком большой.
После ознакомления с принципом действия устройства переходим к его монтажу.
Порядок сборки устройства
Проверьте комплектность набора согласно прилагаемому перечню элементов:
• отформуйте выводы пассивных компонентов и установите их в соответствии с монтажной схемой;
• установите панель под микросхему на соответствующее место;
• установите микросхему в панельку;
• подключите электродвигатели в соответствии с монтажной схемой;
• приклейте зеркала на соответствующие площадки втулок и установите втулки на валы двигателей;
• подключите потенциометры в соответствии с рис. 140;
• включите питание, добейтесь необходимой траектории луча (для визуализации луча при юстировке системы можно применить легкое задымление воздуха внутри устройства, не забывая при этом о предупреждениях Госпожнадзора и Минздрава);
• зафиксируйте на клей положение излучателя и электродвигателей;
• потенциометры Р1, Р2 управляют скоростью и направлением вращения двигателей, поэтому вращайте их медленно! Двигателю необходимо время для отработки команды управления от потенциометра, около 3 секунд.