Радиолокация без формул, но с картинками
Шрифт:
Переносная полевая радиолокационная станция. Работающий на ней оператор обнаруживает движение войсковой колонны за 1,5–2 километра, машину — за 6 километров. Усовершенствованный вариант этой станции имеет вес всего 4,5 килограмма и обслуживается одним оператором, да и тому не обязательно находиться около самого радиолокатора — хорошей мишени для противника. Оператор может находиться за сотни метров от станции, так как в ней предусмотрено дистанционное управление. В радиолокаторах такого типа не делают индикаторов с большими экранами. Обнаружение цели производится оператором на слух, так как принятый отраженный сигнал преобразуется в звуковой, высота тона и громкость которого зависят от характера цели. Опытный специалист может, например, на слух определить, что он обнаружил:
Созданы портативные станции, которые заменяют часовых при охране важных объектов. Они обнаруживают человека за 45 метров, машины за 180 метров и определяют скорость движения замеченных объектов.
Как видите, совсем неплохие характеристики. А ведь разработчикам пришлось не только решать сложные задачи, связанные с разработкой малогабаритных портативных радиолокаторов, но и преодолеть ряд других трудностей. Главная из них — помехи от местных предметов. Когда луч радиолокатора направлен в небо, то он может встретить на своем пути лишь самолеты или ракеты. Отметки от них будут отчетливо видны на чистом экране индикатора. Когда же радиолучи скользят вдоль поверхности земли, любые строения, лес, холмы и все окружающие предметы будут видны на экране. На их фоне совсем непросто заметить нужную цель. Вот тут-то и находят применение допплеровские радиолокаторы с непрерывным излучением (помните мы о них говорили в одной из первых глав). В приемники таких станций попадают лишь сигналы от движущихся объектов, а это как раз то, что нужно. Сигналы, отраженные от неподвижных местных объектов, не будут приняты и не помешают обнаружить движущиеся цели.
Есть в иностранных войсках и воздушные радиолокаторы-разведчики, установленные на вертолетах. В одной из таких вертолетных станций весьма остроумно решена задача непрерывного обзора поверхности земли. Обычно для этого применяют вращающуюся антенную систему со специальным двигателем. А тут конструкторы взяли и разместили антенну в лопастях несущего винта вертолета, ведь он же все равно вращается. И теперь винт кроме основной своей обязанности — поддерживать вертолет в воздухе — выполняет еще и роль вращающейся антенны для системы кругового обзора.
Противоартиллерийские радиолокаторы кроме разведки выполняют еще одну важную задачу — защищают свои войска от артиллерийского или минометного огня противника и от тактических ракет. Радиолокаторы непрерывно наблюдают за позициями противника и как только замечают летящую мину, снаряд или ракету противника, то сразу же переходят на слежение за ними. Данные о траектории снаряда поступают в вычислительное устройство, которое через несколько секунд строит полную траекторию полета и определяет точку, откуда послан снаряд. Данные передаются на артиллерийские позиции, и по точке, где расположено орудие противника, мгновенно открывается подавляющий огонь. При этом та же самая станция, которая обнаружила врага, корректирует огонь своих орудий, прослеживая на этот раз траекторию полета своих снарядов и определяя место их падения. Так же действует эта система при ракетном или минометном обстреле.
Как и во всех родах войск, в сухопутных войсках есть радиолокаторы наблюдения за воздушным пространством, станции наведения зенитных ракет и истребителей противовоздушной обороны. Состоят на вооружении и другие станции.
Вообще говоря, используемая нами классификация радиолокационных станций по их применению в различных родах войск довольно условна. Куда, например, отнести радиолокационные взрыватели, размещенные в артиллерийском снаряде, которые использовали воюющие стороны во время второй мировой войны. В ней есть и передатчик, и приемник, и источник питания — батарея элементов, начинающая работать от удара в момент выстрела. Когда снаряд приблизится к цели на заданное расстояние, взрыватель подает сигнал на взрыв снаряда. Применение таких устройств существенно повысило эффективность артиллерийского огня и в зенитной артиллерии, и военно-морском флоте, и в сухопутных войсках. Так к какому роду войск их приписать? Радиолокация верно служит во всех родах войск, охраняя от внезапного нападения и повышая боевую мощь современной армии.
Радиолокация и наука
А как же складываются отношения между радиолокацией и наукой? Неужели радиолокация оказалась неблагодарным ребенком, который в сутолоке дел совсем забыл про родителей — ученых? К счастью, так не произошло. Между наукой и радиолокацией сложились хорошие отношения, полезные для обеих сторон. Ученые непрестанно работают над усовершенствованием методов и техники радиолокации, а она, в свою очередь, оказывает им посильную помощь в исследовании природы.
Впервые радиолокационные методы были использованы в науке для исследования ионосферы. Вспомните, ведь первым прототипом радиолокатора была именно ионосферная станция М. А. Бонч-Бруевича. Ионосфера подобна слоеному пирогу, для каждого слоя которой характерна своя концентрация электронов и ионов. При определенной концентрации электронов в слое (она называется критической) радиоволны будут отражаться от него. Значение критической концентрации электронов для волн различной длины разное. Поэтому, замеряя высоту, на которой произошло отражение сигнала с той или иной длиной волны, можно получить распределение электронной концентрации по всей высоте ионосферы. Эти сведения представляют не только чисто академический интерес (с точки зрения физики атмосферы Земли), но и имеют большую практическую ценность. Зная характеристики ионосферы, можно прогнозировать условия распространения радиоволн, используемых в различных системах связи.
Незаменимым помощником стала радиолокация и для метеорологов. Мы уже немного говорили об этом в одной из глав, но хотелось бы остановиться подробнее. Самый простой метод наблюдения за погодой — это запуски шаров-зондов с метеоприборами. Если к такому шару-зонду прикрепить легкий металлический отражатель, то радиолокатор проследит за его перемещением на расстоянии в несколько сот километров. При этом удается установить скорость и направление воздушных течений на различных высотах. Это, так сказать, косвенный метод наблюдения за атмосферой. Но радиолокация может и непосредственно наблюдать за облаками, грозовыми фронтами и тайфунами.
Характеристики современных станций настолько совершенны, что позволяют не только регистрировать движение фронтов облачности, но и оценивать интенсивность осадков. Как сообщалось в зарубежной печати, создана метеорологическая радиолокационная станция, которая позволяет фиксировать даже турбулентные образования в чистой атмосфере, то есть, грубо говоря, замечать завихрения, возникающие при перемещении слоев атмосферы. Эта станция имеет такую чувствительность, что специалисты на расстоянии в 16 километров могут отличить пчелу от бабочки[10]. Особенно важную роль играют метеорологические радиолокаторы при наблюдении за ураганами и тайфунами. На основании полученных данных посылаются предупреждения командам судов, находящихся в угрожаемых районах, и летчикам, маршруты которых пролегают вблизи опасных мест.
Насколько успешно действуют такие системы? Например, центральная авиаметеорологическая станция Москвы, обслуживающая московские аэродромы и оснащенная весьма совершенными радиолокационными станциями, только за 1969 год обеспечила 200 тысяч самолетовылетов. Причем ни один самолет не возвратился из рейса из-за неоправдавшегося прогноза.
Высокая точность измерения расстояния до отражающего объекта, которую обеспечивают современные станции, позволяет использовать радиолокацию для картографирования земной поверхности, причем картографирование может осуществляться и с самолетов, что позволяет охватить сразу очень большие площади. В иностранной печати сообщается, что загоризонтные радиолокаторы дадут возможность производить съемку береговых линий, удаленных на расстояние в тысячи километров. Это возможно потому, что сигналы, отраженные от морской поверхности, которая всегда хоть немного да волнуется, отличаются по частоте от эхо-сигналов, отразившихся от неподвижного берега (вспомните эффект Допплера).