Чтение онлайн

на главную

Жанры

Ракеты и полеты в космос

Лей Вилли

Шрифт:

После окончания войны все вышеуказанные лица, включая и доктора Зенгера, допрашивались союзниками. Несколько экземпляров доклада были обнаружены специальными разведывательными группами англо-американцев.

Зенгера интересовал вопрос, что будет, если крылатая - ракета войдет в плотные слои атмосферы,—скажем, на высоте 40 км.— слишком быстро и слишком круто. Из доклада было ясно, что ракета в этом случае должна рикошетировать, подобно плоскому камню, касающемуся поверхности озера. «Отскочив» от плотных слоев, ракета должна снова уйти вверх, в более разреженные слои атмосферы. Пролетев некоторое расстояние, ракета опять попадет в плотные слои и вновь рикошетирует. В целом траектория ее полета будет представлять волнистую линию с постепенно «затухающей» амплитудой. По расчетам

Зенгера и Бредт такая траектория весьма значительно повышала возможную дальность полета крылатой ракеты.

Основываясь на этом, Зенгер построил концепцию ракетного бомбардировщика-антипода (рис. 83). Предполагалось, что длина его составит около 28 м, размах крыльев — почти 15 м, сухой вес—20 т, вес топлива и бомбовой нагрузки— 80 т. Таким образом, полный стартовый вес доводился до 100 т. Но при таком весе очень много топлива требовалось бы для взлета; не помогли бы тут и стартовые ускорители. Выход, предложенный доктором Зенгером, заключался в том, чтобы построить длинный прямой стартовый трек с рельсами длиной 3 км. Самолет помещался бы на салазки, на которых могло быть установлено любое потребное количество ракетных двигателей. Эти ракетные салазки должны были работать около 10 секунд, что позволяло разогнать самолет на треке до скорости 500 м/сек. Затем он должен был набирать высоту с помощью своего маршевого двигателя.

Рис. 83. Бомбардировщик-«антипод» Зенгера.

Принимая скорость истечения равной 3000 м/сек, можно довести скорость крылатой ракеты до 6000 м/сек и поднять ее на максимальную высоту 260 км. Все это хорошо иллюстрируется приводимыми ниже расчетными данными и рис. 84.

Рис. 84. Диаграмма траектории полета бомбардировщика-«антипода» Зенгера.

После пятого снижения могло быть еще четыре «волны» с вершинами на высоте 60 км и нижними точками на высоте 40 км. При этом расстояние по горизонту между нижними точками составляло бы около 1000 км и имело тенденцию к сокращению. Девятая нижняя точка лежала бы тогда в 16800 км от точки старта. Затем самолет в течение некоторого времени мог оставаться на высоте 40 км, а в 23 000 км от точки старта терял бы высоту и, пролетев еще 500 км, то есть в общем половину расстояния вокруг Земли, совершал бы посадку. Посадочная скорость должна была составить всего 140 км/час, что давало возможность любому аэропорту принять такой самолет-ракету. Однако самолет-ракета Зенгера мог нести только 300 кг полезной нагрузки, не считая пилота.

Проект Зенгера рассчитан для ракетных двигателей со скоростью истечения порядка 3000 м/сек, которая еше и сейчас не является стандартной. Доктор Зенгер занимался проблемой полетов и на более короткие расстояния. Основная трудность такого полета состояла в развороте самолета-ракеты на обратный курс. Оказалось, что развернуть самолет, идущий со скоростью почти 1600 м/сек, чрезвычайно трудно: многие приборы и агрегаты могут отказать из-за чрезмерных перегрузок, и, кроме того, для выполнения такого маневра необходимо огромное количество топлива. Гораздо легче было бы осуществить прямой полет с посадкой на базе, расположенной на «противоположном конце» Земли. В этом случае самолеты-ракеты стартовали бы с какой-нибудь базы в Германии, скажем из Берлина, сбрасывали бы свои бомбы в заданном районе или пункте и приземлялись бы в точке-антиподе. Обратный полет также можно было бы использовать для бомбардировки той же или другой цели.

Схема таких полетов

была рассчитана довольно точно, хотя и имела некоторые недостатки. Так, точка-антипод для любой точки старта в Германии оказывалась в районе Австралии и Новой Зеландии, то есть на территории, контролируемой западными союзниками. Кроме того, города-цели не всегда оказывались там, где этого требовал «план полета». Далее, любая бомбардировка должна была производиться с нижней точки траектории, но даже и тогда рассеивание при бомбометании оставалось бы исключительно большим. Единственным городом в Западном полушарии, который при полете из Германии по схеме Зенгера находился бы под нижней точкой траектории, являлся Нью-Йорк. При этом бомбардировщик направлялся бы в Японию или в ту часть Тихого океана, которая тогда находилась в руках японцев.

Задумывался Зенгер и над еще одной возможностью. Зачем останавливаться в точке-антиподе? Почему не облететь вокруг Земли и не вернуться снова на ту базу, с которой был осуществлен старт? Расчеты показывали, что для этого потребуется скорость истечения порядка 4000 м/сек, которая обеспечит максимальную скорость ракеты 7000 м/сек с первым пиком на высоте 280 км и на удалении 3500 км от точки старта и первым снижением до 40 км на расстоянии 6750 км от точки старта. В этом случае девятое снижение лежало бы на расстоянии 27 500 км от стартовой позиции. Посадка в точке старта могла быть сделана через 13 060 секунд, то есть через 3 часа 40 минут после старта.

Доклад Зенгера заканчивался рекомендацией принятия схемы с одной базой, как наиболее практичной, и перечислением исследовательских проектов, которые нужно было выполнить для ее осуществления. Легко понять, почему никто из высокопоставленных немцев, прочитавших этот доклад, ничего не предпринял; было уже слишком поздно, чтобы реализовать подобный проект. Кроме того, все понимали, что даже если бы у немцев и имелись такие бомбардировщики, то бомбовая нагрузка в 300 кг бомбардировщика-антипода или 3800 кг — бомбардировщика, совершающего полет вокруг Земли, не имела бы большого военного значения.

Это была, безусловно, интересная идея, но трудно предположить, что кто-либо решится на ее осуществление. Вряд ли можно применить этот способ увеличения дальности для мирных целей, а для военных в настоящее время имеются более эффективные ракеты дальнего действия.

Авиация и ракетные исследования сомкнулись также и в области обеспечения взлета самолетов с земли, с воды, а позднее — с палуб авианосцев.

Мысль о применении реактивных ускорителей для взлета самолетов возникла вскоре после первой мировой войны. Сначала они были использованы на поплавковых гидросамолетах, а затем авиационные инженеры начали думать о более широком применении реактивного принципа ускорения старта. Идея заключалась в том, чтобы расходовать мощность основного двигателя только в полете, а взлет обеспечивать с помощью ракет.

Впервые одномоторный поплавковый гидросамолет фирмы «Юнкерс» был испытан на взлете с батареей пороховых ракет летом 1929 года.

Первые сведения о практическом применении стартовых реактивных ускорителей поступили из Голландии во время «битвы за Англию». Сообщалось, что немцы запускали перегруженные бомбардировщики с небольших полевых аэродромов, используя ускорители. Это были оригинальные металлические решетки, помещаемые в нижней части фюзеляжа самолета и содержащие большое количество пороховых ракет, которые воспламенялись электрическим запалом. Когда самолет поднимался в воздух, пустые решетки сбрасывались.

Эти импровизированные ускорители, вероятно, составлялись из ракет Шмиддинга. Но еще раньше, в 1938 году, хорошо зарекомендовали себя стартовые ускорители Вальтера, работавшие на перекиси водорода. Взлеты самолета He-112 с ускорителями Вальтера были даже засняты на кинопленку. Имевшие почти круглую форму стартовые ускорители обычно подвешивались к крыльям самолета рядом с двигателями. Они должны были сбрасываться сразу же по использовании, чтобы не создавать дополнительного лобового сопротивления. Все первые стартовые ускорители были «холодного» типа, но с увеличением веса самолетов стали применяться и «горячие».

Поделиться:
Популярные книги

Поступь Империи

Ланцов Михаил Алексеевич
7. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Поступь Империи

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Темный Охотник 3

Розальев Андрей
3. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 3

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII