Распространненость жизни и уникальность разума?
Шрифт:
2.7. Попытки моделирования примитивных клеток
В ранних работах о происхождении жизни была выдвинута идея предклеточных структур, существующих в водной среде в форме “микросфер” (Fox, 1965; 1991) и “коацерватных капель” (Опарин, 1966). Микросферы формировались из т. н. протеиноидов – белковоподобных веществ, образованных путем термической полимеризации наборов аминокислот. Несмотря на отсутствие липидов, микросферы ограничены похожей на мембрану структурой, формирование которой зависит от присутствия в протеиноидах звеньев с гидрофобными боковыми группами. При механических воздействиях микросферы дробились (делились), можно было также добиться их слияния.
Коацерватные капли конструировались из готовых белков, в том числе ферментов, нуклеиновых кислот, полисахаридов, липидов, хлорофилла и других веществ, которые можно встретить в живой клетке. Показательно, что ферментативные реакции в коацерватных каплях протекали эффективнее, чем в окружающей среде. Накапливая материал, коацерватные капли увеличивались в размерах и делились. Однако реально коацерватные капли, конструировавшиеся
В последние годы вновь проявился интерес к проблеме экспериментального изучения возможных свойств примитивных клеток. Этот интерес отразили конференции по искусственным формам жизни (для обзора см. Rasmussen et al., 2004). Здесь следует заметить, что самые ранние отпечатки клеток, обнаруженные к настоящему времени на Земле, возраст которых 3.5 млрд лет, принадлежат уже клеткам современного типа. Однако тонкие детали структуры этих клеток и, тем более, молекулярный состав практически неопределимы. Отпечатки предшествовавших им примитивных клеток вообще не найдены. Поэтому любые современные версии примитивных клеток, даже успешные, могут рассматриваться лишь как правдоподобные, но отнюдь не обязательно существовавшие структуры.
Предложены несколько вариантов моделирования примитивных клеток, которые соответствовали бы приведенному выше определению живого. Так, исследуются системы, содержащие пептид-нуклеиновую кислоту (ПНК) как относительно простой автореплицирую-щийся компонент. Предполагается, что автореплицирующиеся молекулы (протогены), принимая определенные конформации, смогут выполнять матричные и каталитические функции (например при синтезе пептидов). В системах присутствуют также пигментные комплексы, призванные обеспечивать их энергией позаимствованной у Солнца. Обязательным участником такой системы является мембрана, организующая все компоненты и изолирующая систему (клетку) от среды. Эта мембрана может быть образована липидами (см. Segre et al., 2001) или другими, способными образовать мембрану в водной среде, соединениями, например гетероциклическими, которые благодаря поступлению из космоса и локальным синтезам присутствовали в значительном количестве на Земле в период становления на ней жизни (Ehrenfreund et al., 2006). Основная задача исследователей – запустить в искусственно организованных клетках самоподдерживающиеся синтетические и другие процессы, которые обеспечили бы их рост и деление. В настоящее время разным группам исследователей удалось в липидном пузырьке осуществить отдельные синтезы, в частности экспрессировать определенные белки (Luisi et al., 2006), провести авторепликацию ПНК (Rasmussen et al., 2003). Возможность деления липидных пузырьков доказана экспериментально (Hanczyc and Szostak, 2004; Luisi et al., 2004). Однако еще предстоит сделать главное: наладить взаимозависимые синтетические и другие процессы, которые обеспечат воспроизводство содержимого пузырька и его деление с образованием двух полноценных структур, способных повторить цикл. По достижении этой цели метаболирующие пузырьки можно будет переименовать в искусственно полученные примитивные клетки. Очевидно, что в делящихся примитивных клетках отсутствовал механизм эквивалентного распределения автореплицирующихся молекул между дочерними клетками. Поэтому в клетке за период роста должны были пройти несколько циклов воспроизводства молекул, чтобы при делении вероятность их попадания в обе дочерние клетки была велика. Напомним, что именно таков механизм сохранения митохондрий в поколениях эукариотических клеток.
Собственные возможности ранних клеток были весьма ограничены. Их развитие должно было быть направлено, в первую очередь, на совершенствование автореплицирующихся молекул и ускорение их синтеза. Представляется маловероятным, чтобы в числе продуктов ранних клеточных синтезов были элементы клеточной оболочки. Тем более что эти элементы, каковыми могли быть жирные кислоты, липиды, “гидрофобные” пептиды, накапливались в среде как продукты химических реакций. Об этом свидетельствуют эксперименты, воссоздающие условия, которые могли существовать на ранней Земле. Среди продуктов были, в частности, обнаружены липиды фосфатидилхолин и фосфатидилэтано-ламин (Epps et al. 1978; Deamer, 1986). Эти липиды принадлежат к числу основных составляющих липидного бислоя, образующего стенки (мембраны) современных клеток. Для таких молекул характерно наличие гидрофильной головки и гидрофобного конца, образованного протяженными углеводородными цепочками. Липиды стремятся самоорганизоваться в бислой, обе поверхности которого гидрофильные, а внутренняя область, цементирующая бислой, сформирована из гидрофобных углеводородных цепочек. Там, где присутствовала влага, липидные бислои образовывали поверхностный слой, состоявший преимущественно из замкнутых микроструктур – везикул (пузырьков), внутренняя полость которых была заполнена водной средой. Везикулы могли захватывать приобретшие способность к метаболизму молекулярные ансамбли, формируя таким образом ранние клеточные структуры (Monnard and Deamer, 2002).
Липидная оболочка содержала разнообразные вкрапления, в частности пептиды, нарушавшие регулярность структуры бислоя, Эти вкрапления облегчали транспорт через мембрану веществ, необходимых для жизнедеятельности клетки.
Примитивные клетки формировались не только на основе молекулярных ансамблей, “сползших” с создавшей их поверхности, но и сами каталитические пылинки могли оказаться включенными в клетки. В этом случае поверхностный катализ сохранялся в клетке, что существенно повышало ее возможности.
Предложена гипотеза, основанная на предположении, что липидные мембраны с самого начала были основой, объединившей “репликаторы” (нуклеиновые кислоты или их предшественники), катализаторы, пептиды. Конкуренция этих все усложнявшихся нуклео/ белково/липидных ансамблей приводила к отбору воспроизводившихся наиболее точно и быстро. Симбиотические взаимодействия (слияния) ускоряли эволюцию этих прото-организмов (Cavalier-Smith, 2001).
Естественно, ранние клетки не могли обеспечить регулярность клеточного деления, весьма сложного многоступенчатого процесса. Клеточное деление могло осуществляться при разрыве оболочки вследствие переполнения клетки синтезированными продуктами и при случайных механических повреждениях, например при попадании клетки в турбулентность.
Представляется очевидным, что жизнь клетки могла протекать только в водной среде, где черпались продукты, служившие клеткам питанием, и могла формироваться липидная оболочка. Электрический разряд и высокая температура, служившие важными источниками энергии при доклеточных синтезах в атмосфере, не могли быть столь же эффективно использованы обитавшими в водной среде клетками. Однако по-прежнему эффективным оставалось ультрафиолетовое излучение Солнца, свободно достигавшее поверхности Земли благодаря отсутствию в атмосфере свободного кислорода, а следовательно, и поглощающего ультрафиолетовое излучение озонового слоя (в значительном количестве кислород появился в атмосфере Земли через 1 млрд лет как побочный продукт фотосинтеза). Отсутствие свободного кислорода давало преимущество синтетическим процессам перед окислительной деструкцией, что было весьма существенным в тот ранний период эволюции, когда скорость синтетических процессов, в том числе полимеризации, была еще очень низка.
Синтезированные под действием ультрафиолетового излучения гетероциклические соединения (пирролы, имидазолы, индолы, азотистые основания, порфирины) могли перехватывать энергию видимого света и использовать ее на образование макроэргических соединений. На роль таких макроэргов, которые обеспечивали энергией синтетические процессы в ранних клетках, а возможно, и в предклеточных системах, прочат неорганические полифосфаты, в частности пирофосфат (Baltscheffsky and Baltscheffsky, 1994).
Глава III. Мир РНК-ДНК
3.1. Миры до РНК и мир РНК
Многие исследователи полагают, что первым клеточным миром был мир РНК (Ferris, 1999; Hoenigsberg, 2003). Однако по причинам, рассмотренным выше, более правдоподобна версия, согласно которой в ранних клетках функционировали информационные автореплицирующиеся молекулы, в которых азотистые основания были подключены к просто организованным линкерам. Эти линкеры могли быть синтезированы путем пребиотических синтезов. Один из возможных предшественников РНК – уже упоминавшаяся выше пептид-нуклеиновая кислота (ПНК) – имеет структуру белка (звенья соединены пептидной связью), в котором боковыми группами являются азотистые основания (см. Раздел 2.5). Комплементарные нити ПНК способны образовать биспираль и, что особенно важно, комплементарные нити ПНК и РНК образуют гибридную биспираль. Экспериментально установлено, что ПНК может быть использована в качестве матрицы при комплементарном синтезе РНК (Bohler et al., 1995). Если ПНК как информационная автореплицирующаяся структура была непосредственным предшественником РНК, то благодаря столь высокой их совместимости переход к миру РНК мог произойти достаточно плавно. Этот переход был подготовлен приобретением клетками способности производить сахар d-рибозу, нуклеозиды, являющиеся продуктами присоединения одного из четырех азотистых оснований (аденина, гуанина, цитозина или урацила) к d-рибозе по углероду С1, и нуклеотиды – фосфорилированные макроэргические производные нуклеозидов (нуклеозидтрифосфаты). Именно нуклеотиды являются звеньями в цепи РНК. Сами нуклеотиды и ряд их низкомолекулярных производных могли быть использованы для запасания и переноса энергии, а также в качестве коферментов участвовать в ферментативном катализе, в том числе в комплементарной авторепликации РНК. На этом поприще РНК вытеснила предшествовавшие ей автореплицирующиеся макромолекулы. Первоначально мир РНК, в принципе, мало отличался от того, на смену которому он пришел. Предположительно, достаточно протяженные молекулы РНК были организованы подобно их предшественникам в форме последовательности петель, которые селективно связывали определенные аминокислоты и фиксировали их в положениях, благоприятствовавших образованию полимерной цепи (Рис. 1А). Таким образом, молекулы РНК одновременно служили матрицами, связывающими аминокислоты, и кодировали аминокислотную последовательность пептида (белка). Правдоподобность этой гипотезы подтверждается данными о реальном существовании структур РНК, специфически связывающих определенные аминокислоты. Такая структура была первоначально выявлена в интроне предшественника рибосомной РНК тетрахимены (Yarus, 1988). Соответствующий участок РНК стабильно изогнут в форме петли, сформированной как полость, которая специфически связывает аргинин. При этом оказалось, что РНК-петля предпочтительно связывает L-форму аргинина, т. е. осуществляет хиральную селекцию. Измерения константы диссоциации такого комплекса показали его высокую стабильность (Geiger et al., 1996). Впоследствии были обнаружены РНК петли, специфически связывающие фенилаланин и триптофан (Zinnen and Yarus, 1995). Эти наблюдения имеют принципиальное значение. В частности, они подтверждают возможность осуществления хиральной селекции аминокислот в петлях примитивных РНК-матриц. В период, когда синтез аминокислот был абиотическим и, следовательно, в клетку поступали оба оптических изомера, способность петель осуществлять первичную селекцию энантиомеров (оптических изомеров) обеспечивала оптическую однородность сформированного белка.