Чтение онлайн

на главную - закладки

Жанры

Расширенный Фенотип: длинная рука гена
Шрифт:

Для того чтобы задаваться вопросами, почему мир таков, каков он есть, мы должны представить себе, а каким он мог бы быть. Нужно придумать возможные миры, жизнь в которых была бы организована по-другому, и спросить себя, как бы все устроилось в таких мирах. Какие же альтернативы существующей жизни было бы полезно представить? Во-первых, чтобы понять, почему реплицирующиеся молекулы концентрируются в клетках, давайте представим себе мир, где они свободно плавают в океане. Там будет существовать множество разных репликаторов, они станут конкурировать друг с другом за пространство и за химические ресурсы, необходимые для построения собственных копий, но при этом не сгруппируются ни в хромосомах, ни в ядрах. Каждый одиночный репликатор оказывает фенотипические воздействия, способствующие его копированию, а отбор благоприятствует тем репликаторам, воздействия которых наиболее эффективны. Легко предположить, что подобный мир будет эволюционно нестабилен. Его заполонят мутантные репликаторы, «собирающиеся в банды». Химические эффекты некоторых репликаторов будут дополнять друг друга — в том смысле, что если химические эффекты двух репликаторов объединить,

то это будет содействовать копированию обоих (Модель 2 из предыдущей главы). Я уже приводил в качестве примера гены, которые кодируют ферменты, катализирующие последовательные этапы биохимического синтеза. Этот принцип можно распространить и на более крупные группы взаимодополняющих реплицирующихся молекул. Биохимия нашей планеты действительно позволяет предположить, что минимальная реплицирующаяся единица (за возможным исключением живущих на всем готовеньком абсолютных паразитов) должна состоять примерно из пятидесяти цистронов (Margulis, 1981). Для наших рассуждений не имеет значения, каким образом возникают новые гены: то ли старые гены удваиваются и остаются неразделенными, то ли гены, бывшие изначально независимыми, в самом деле собираются вместе. И в том, и в другом случае мы в равной степени можем говорить об эволюционной стабильности «объединенного» состояния.

Итак, для чего гены собираются в клетках, понять несложно, но зачем клеткам сбиваться в многоклеточные клоны? Можно подумать, что тут никакие мысленные эксперименты не нужны, так как наш мир изобилует одноклеточными и неклеточными формами жизни. Все они, однако, мелкие, и, возможно, имеет смысл попытаться представить себе мир, в котором существовали бы крупные и сложно устроенные одноклеточные или одноядерные организмы. Вообразима ли такая форма жизни, при которой один-единственный набор генов, восседающий в единственном центральном ядре, управлял бы биохимией макроскопического тела со сложными органами, будь то одна гигантская клетка или многоклеточный организм, все клетки которого, за исключением одной, не имеют своей собственной копии генома? Я думаю, что такая форма жизни могла бы существовать, только если бы ее эмбриология покоилась на принципах, совершенно не похожих на те, что нам известны. При всех знакомых нам типах развития, в любой развивающейся ткани в любой момент времени «работает» лишь меньшая часть генов (Gurdon, 1974). Согласен, пока что это слабый аргумент, но все же трудно понять, каким образом необходимые генные продукты могли бы переправляться в нужные части развивающегося организма в нужное время, если бы на весь организм имелся только один набор генов.

Но почему в каждую клетку тела должен попадать полный набор генов? Такую форму жизни, при которой геном разделялся бы на части в процессе дифференцировки, представить себе, безусловно, несложно. Тогда каждый тип ткани — скажем, в печени или в почках — получал бы только те гены, которые ему нужны.

Казалось бы, только у клеток половой линии есть необходимость сохранять геном целиком. Дело, возможно, всего-навсего в том, что не существует простого способа физически разделять геном на части. Ведь, в конце концов, все гены, нужные в какой-то определенной дифференцирующейся области развивающегося организма, не собираются на одной хромосоме. Полагаю, тут мы могли бы задаться вопросом: а почему все обстоит именно так? Но исходя из того факта, что все так, а не иначе, можно предположить, что полное удвоение генома при каждом клеточном делении — это просто самый легкий и экономичный вариант. Однако в свете моей притчи про марсианина-идеалиста и необходимость быть циничным читатель, возможно, поддастся соблазну пойти в своих предположениях дальше. Не может ли статься, что полное, а не частичное копирование генома при митозе является приспособлением некоторых генов, которое позволяет им выявлять среди своих коллег потенциальных отщепенцев и обезвреживать их? Лично я сомневаюсь, и не потому что все это чистейшая выдумка, а потому что трудно представить себе, какую выгоду извлечет, допустим, ген, находящийся в печени, если он взбунтуется и начнет вредить генам из почек или из селезенки. Исходя из логики главы о паразитах, интересы «генов печени» и «генов почки» должны совпадать, поскольку у них общая зародышевая линия и все они выходят из тела в одних и тех же гаметах.

Я не дал организму строгого определения. Можно, в самом деле, утверждать, что понятие «организм» имеет сомнительную ценность хотя бы потому, что его трудно определить удовлетворительным образом. С точки зрения иммунологии или генетики пара однояйцевых близнецов могла бы считаться единым организмом, хотя для физиолога, этолога или с позиции хакслиевско-го критерия неделимости она под это понятие однозначно не подходит. Что такое «особь» в колонии сифонофор или мшанок? Словосочетание «индивидуальный организм» вызовет у ботаника меньше теплых чувств, чем у зоолога, и на то есть причины: «Особь плодовой мушки, хрущака, кролика, плоского червя или слона представляет собой популяцию на клеточном, и ни на каком другом, более высоком, уровне. От голодания у животного не меняется количество ног, сердец или печенок, однако у растений стресс будет влиять как на формирование новых листьев, так и на отмирание старых. Растение может отвечать на стресс изменением числа частей своего тела» (Harper, 1977, р. 20–21). Для Харпера, изучающего популяции растений, лист может казаться «особью» в большей степени, чем «растение» — беспорядочный, нечеткий объект, чье размножение иногда трудно отличимо от того, что зоологи беззаботно называют «ростом». Харпер чувствует потребность ввести два новых термина для обозначения разных типов «индивидуума» в ботанике. «Единицей клонального роста является „рамет“ — объект, который, будучи отъединен от родительского растения, как правило, способен вести независимое существование». Иногда — например, у земляники — рамет и есть

то, что мы называем «растением». У других видов, скажем, у клевера ползучего, раметом может быть и отдельный лист. А «ге-нет» — это все, что вырастает из одноклеточной зиготы, «организм» с точки зрения зоолога, изучающего животных, которые размножаются половым путем.

Янзен тоже попытался разобраться с этой трудностью (Janzen, 1977), предложив рассматривать клон одуванчиков как единого «эволюционного индивидуума» (харперовский генет), эквивалентного одному дереву — пусть и не подвешенного на стволе, а разбросанного по поляне и физически разделенного на отдельные «растения» (раметы, по Харперу). В соответствии с такой точкой зрения возможно, что на территории всей Северной Америки друг с другом конкурируют всего четыре «особи одуванчика». Аналогичного взгляда Янзен придерживается и на колонию тлей. В его статье отсутствуют литературные ссылки, но такая точка зрения не нова. Она существует по меньшей мере с 1854 г., когда Т. Г. Гекели «трактовал каждый жизненный цикл как особь, принимая за целостную единицу все, что возникает от зиготы до зиготы. Он даже последовательность бесполых поколений у тлей рассматривал как индивидуума» (Ghiselin, 1981). У этого подхода есть свои достоинства, но я покажу, что при этом остается за бортом нечто важное.

Доводы Гексли/Янзена могут быть сформулированы следующим образом. Зародышевая линия типичного организма — скажем, человека — каждый раз между мейотическими делениями проходит, вероятно, через несколько десятков митозов. Если, как в главе 5, взглянуть на «прошлый опыт гена» ретроспективно, то история клеточных делений, в которых принимал участие любой ген любого человека, будет выглядеть так: мейоз, митоз, митоз… митоз, мейоз. В каждом из сменяющих друг друга тел, помимо митозов, происходивших в клетках зародышевого пути, были и другие митотические деления, обеспечивавшие зародышевую линию гигантским клоном «клеток-помощниц», которые группировались в организм, где «квартировали» половые клетки. В каждом поколении зародышевая линия вытекает через одноклеточное «бутылочное горлышко» (гамету, дающую начало зиготе), затем раздувается до многоклеточного организма, затем снова вытекает через узкое горлышко и т. д. (Bonner, 1974).

Многоклеточный организм — это машина по производству одноклеточных пропагул. Крупных животных, например слонов, лучше всего рассматривать как тяжелую машинерию, временное депо ресурсов, скапливаемых с той целью, чтобы производить пропагулы позже, но более успешно (Southwood, 1976). Зародышевая линия в каком-то смысле «предпочла бы» сократить инвестиции в промышленность, уменьшить число клеточных делений в период роста и таким образом сделать ожидание заветного размножения более коротким. Однако период роста имеет некую оптимальную продолжительность, которая при каждом способе существования своя. Гены, побуждавшие слонов к размножению, когда те были слишком молодыми и мелкими, распространялись менее эффективно по сравнению с более терпеливыми аллелями. Для генов, оказавшихся в слоновьих генофондах, длина этого оптимального промежутка времени будет сильно больше, чем для генов из генофондов мышей. В случае со слонами, для того чтобы получать доход, требуется сделать более крупные капиталовложения. А одноклеточные практически полностью обходятся без фазы роста в своем жизненном цикле, все клеточные деления у них «репродуктивные».

Из такого взгляда на организмы следует, что конечным продуктом, «целью» фазы роста является размножение. Митотические клеточные деления, в результате которых получается слон, направлены исключительно на то, чтобы в конечном итоге произвести жизнеспособные гаметы, увековечивающие зародышевую линию. Теперь, памятуя об этом, давайте взглянем на тлей. В течение лета партеногенетические самки дают начало нескольким сменяющим друг друга поколениям, размножающимся бесполым путем. Эта последовательность венчается единственным половым поколением, которое начинает цикл заново. Безусловно, нетрудно провести аналогию со слоном и вслед за Янзеном считать летние бесполые поколения направленными к одной конечной цели — осеннему половому размножению. Бесполое размножение, согласно такой точке зрения, — это и не размножение вовсе. Это рост, точно такой же, как и рост слоновьего тела. Для Янзена весь клон самок тлей представляет собой один эволюционный организм, поскольку возникает в результате единственного слияния гамет. Это необычный индивидуум в том смысле, что он раздроблен на множество физически не связанных друг с другом единиц — ну и что с того? Каждая из этих обособленных единиц содержит собственную порцию зародышевой плазмы, но то же самое можно сказать и про левый и правый яичники слонихи. В случае с тлями эти порции половых клеток разделены слоем воздуха, в то время как слоновьи яичники разделены кишками, но опять же и что с того?

Как бы ни была убедительна подобная аргументация, я уже упоминал, что она упускает кое-что важное. Справедливо рассматривать большинство митотических делений как «рост», который в конечном итоге «служит» для размножения. Также справедливо считать индивидуальный организм результатом одного репродуктивного события. Но Янзен, пытаясь выявить разницу между размножением и ростом, совершает ошибку, подменяя это противопоставлением понятий «половой» и «бесполый». Какое-то важное различие здесь наверняка скрывается, но пролегает оно не между полом и его отсутствием и не между мейозом и митозом.

То различие, которое хотелось бы подчеркнуть мне, — это различие между делениями половых клеток (размножением) и соматическими или «тупиковыми» клеточными делениями (ростом). При делении половых клеток копирующиеся гены имеют шансы оказаться предками бесконечно длинной цепи потомков, все представители которой будут, если выражаться в терминах главы 5, истинными репликаторами зародышевого пути. Деление половой клетки может быть как митотическим, так и мейотическим. Если просто рассматривать деление клетки под микроскопом, то не всегда можно сказать, в зародышевой линии оно происходит или нет. Митотические деления половых и соматических клеток могут быть внешне неразличимы.

Поделиться:
Популярные книги

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Игра топа

Вяч Павел
1. Игра топа
Фантастика:
фэнтези
6.86
рейтинг книги
Игра топа

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Огненный князь 2

Машуков Тимур
2. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал