Расширяя границы Вселенной: История астрономии в задачах
Шрифт:
5.24. Как выяснилось уже в наши дни, Тихо Браге и другие учёные в 1572 г. наблюдали вспышку сверхновой звезды в нашей Галактике. Это явление наблюдается при взрыве массивной звезды — сверхгиганта, после которого от неё остаётся лишь ядро — нейтронная звезда весьма малого размера или чёрная дыра. После того, как горячая оболочка взорвавшейся звезды рассеется и остынет, на месте взрыва невооружённым глазом уже ничего не видно. Для дальнейших наблюдений требуется мощный телескоп — оптический, радио- или рентгеновский.
Указанных в условии задачи данных вполне достаточно для определения условий видимости звезды в момент вспышки. А более точные координаты Сверхновой 1572
Узнать условия видимости Венеры значительно сложнее: для этого проще всего использовать электронную программу — планетарий, достаточно точную, чтобы вычислять положения планет на интервалах времени в несколько столетий (для решения именно этой задачи советуем использовать программу А. Волынкина Turbo Sky v.3: в указанную дату на соответствующем месте её электронного неба действительно появляется Звезда Тихо). Установив дату «11 ноября 1572 г.» и широту Москвы, увидим, что условия видимости Венеры были превосходными: планета была почти в максимальной западной элонгации; располагаясь на угловом расстоянии в 43° от Солнца, она восходила под утро и к началу сумерек уже была на высоте около 20° над горизонтом, имея блеск около —5 m. Вслед за ней восходил Меркурий (западная элонгация 20°), а ещё позже, уже в лучах Солнца — Сатурн. Яркий Юпитер кульминировал поздним вечером на высоте в 40°. Как видим, условия для изучения Новой Тихо были практически идеальными.
Роль Сверхновой 1572 г. в истории астрономии чрезвычайно велика: её появление раз и навсегда разрушило древнее заблуждение о неизменности звёздного неба, а также окончательно определило судьбу Тихо Браге как астронома, работы которого дали толчок рождению новой науки.
5.25. Максимум излучения Сириуса лежит в ультрафиолетовой области спектра, поэтому в синей области его излучение больше, чем в жёлтой и зелёной. «Дерзким» Сириус, вероятно, назван за свой блеск: это ярчайшая звезда ночного неба.
Цвет Альдебарана, определяемый его температурой (3500 К), считается в астрономии оранжевым, иногда красноватым, что соответствует цветам рубина, разновидности которого имеют цвета от розового до красного. Под «цепью» Ориона, по-видимому, надо понимать звёзды так называемого «пояса» Ориона: , , . Эти звёзды голубоватые, с показателем цвета B-V около —0,2 mи звёздной величиной около 2 m. Их яркость и голубой оттенок вызвали у поэта ассоциацию с алмазом, основное свойство которого — высокий показатель преломления (n=2,4).
«Арго» — это прежде существовавшее
5.26. Действительно, за пределом атмосферы, в космосе, звёзд видно больше, и они не мерцают (по выражению одного из путешественников «они… мертвенны»). Ночное небо выглядит темнее, чем при наблюдении с поверхности Земли, поскольку отсутствует рассеяние света и собственное свечение атмосферы. Звёзд видно больше не потому, что их яркость намного усилилась (поглощение света в атмосфере, близ зенита, составляет 25–30 %), а потому, что фон неба стал более тёмным. Рисунок созвездий, разумеется, остался тем же самым.
А вот по поводу «разноцветности» звёзд Циолковский ошибся. Наш глаз вообще плохо воспринимает цвет слабо светящихся объектов, поскольку ночное, «палочковое» зрение не чувствительно к цвету. К тому же, излучение звёзд в основном носит тепловой характер, а распределение энергии в спектре чёрного тела весьма плавное. Поэтому, скажем, фиолетовых, синих и зелёных звёзд ни в космосе, ни на Земле увидеть нельзя. Все горячие звёзды кажутся нам белыми или чуть голубоватыми; и только относительно холодные звёзды могут иметь красный или оранжевый оттенок, да и то лишь в том случае, если они достаточно яркие (см. задачу 5.25).
5.27. В 1859–1860 гг. Р. Бунзен и Г. Кирхгоф в Германии изобрели метод спектрального анализа света. С 1860 года началась история солнечной и звёздной спектроскопии (Д. Донати и А. Секки в Италии, У. Хёггинс в Англии, Г. Кирхгоф в Германии).
5.28. Во второй половине XIX века возникла астрофизика — наука о природе небесных тел и физике космоса. В наше время это основной раздел астрономии. А. Кларк: «Эта наука даёт возможность изучать здесь на Земле строение звёзд, а сущность земных явлений постигать лучше после сравнения со звёздными мирами».
5.29. Предположение Бесселя подтвердилось: среди звёзд и остатков их эволюции оказалось довольно много слабосветящихся и даже совершенно тёмных тел (в том числе и чёрных дыр). Спутники Сириуса и Проциона — это звёзды малой светимости. Спутник Сириуса, белый карлик, был обнаружен американским оптиком А. Кларком в 1862 г. при испытании 46–см рефрактора. Спутник Проциона, тоже белый карлик, был открыт в 1896 г. Дж. М. Шеберле при наблюдении в большой рефрактор Ликской обсерватории.
5.30. Если использовать современные термины, то, очевидно, в этой дискуссии речь идёт о явлении аберрации света. За счёт движения Земли по орбите направление приходящих от Солнца лучей смещается на 20,5''.
5.31. На принципы эволюционности и единства физических законов для всей Вселенной.
5.32. Пять блуждающих звёзд — это пять известных в античное время планет: Меркурий, Венера, Марс, Юпитер и Сатурн. Наблюдаемые у них неравенства— это их петлеобразное и неравномерное движение по небесной сфере. По поводу построения теории наблюдаемых движений планет на основе сочетания только круговых равномерных движений Птолемей уже в приведённой цитате говорит, что он опирается на принцип божественного(понимай — математического) совершенства. Но в другом месте «Альмагеста» у него есть и более физическое обоснование: