Рассказы об электричестве
Шрифт:
В будущем для соединения богатой энергетическими ресурсами Сибири с европейским центром страны понадобятся линии электропередачи на постоянном токе с напряжением 2200–2400 кВ.
После того как были пущены крупнейшие в мире гидроэлектростанции — Братская на Ангаре, мощностью 3,6 млн. кВт, Красноярская на Енисее, мощностью 4 млн. кВт — и после создания Единой энергосистемы Сибири, протянувшейся от Омска до Улан-Удэ, в этом районе стала быстро наращивать темпы промышленность, особенно ее энергоемкие производства: электрохимия, электрометаллургия.
В 1970 году самая большая Единая энергетическая система Европейской части СССР охватывала еще и Зауралье и Закавказье. Она объединяла около 400 электростанций самого разного типа. Тут были и тепловые конденсационные, и теплофикационные, и гидравлические. Более 50 миллионов киловатт была их общая мощность. Однако к середине 80-х годов новые объединенные системы Центральной Сибири, Северного Казахстана, Средней Азии, Забайкалья и Дальнего Востока все решительнее заявляют о своем соперничестве.
Крупнейшая из них — объединенная энергосистема Центральной Сибири — включает Иркутскую, Красноярскую, Кузбасскую. Новосибирскую, Томскую, Омскую, Бурятскую и Барнаульскую энергетические системы. В ней будут работать не только такие гиганты-гидростанции, как Саяно-Шушенская, но и целый куст тепловых электростанций, каждая мощностью более 1 млн. кВт, располагающихся непосредственно у мест добычи топлива. Уже прогремел на всю страну КАТЭК — Канско-Ачинский топливно-энергетический комплекс, а впереди новые стройки, новые рубежи.
Раньше считалось, что только плотина на реке может обеспечить достаточную мощность вырабатываемой энергии. А мы с вами помним, что чем эта мощность больше, тем энергия дешевле. Гидроэнергия неистощима. И по ее запасам наша страна значительно превосходит все другие страны мира. И хотя у нас освоена лишь незначительная часть гидроресурсов, мы занимаем второе место в мире по уровню развития гидроэнергетики.
Гидроэлектростанции выгодны экономически и тем, что на них очень высока производительность труда. Почти в десять раз меньше труда приходится затрачивать на киловатт выработанной энергии работникам ГЭС по сравнению с теми, кто обслуживает тепловые станции (естественно, если учитывать и добычу топлива, и транспортировку).
Современное гидростроительство ведется обычно каскадно. Это позволяет полнее использовать энергетические ресурсы рек.
Вот, например, строящийся единый и крупнейший Ангарский и Енисейский каскад: Иркутская, Братская, Красноярская, Саяно-Шушенская и Усть-Илимская ГЭС — суммарная мощность 10 700 МВт (мега-ватт). А полная мощность всего Ангаро-Енисейского каскада должна составить 43600 МВт в 12 ступенях.
Такими же едиными являются Волжский и Камский каскады гидроэлектростанций, Днепровский каскад — это в европейской части СССР. А в Средней Азии Чирчик-Бозсуйский каскад состоит из 19 гидроэлектростанций, суммарной мощностью 1170 МВт.
Советское гидрогенераторостроение заняло ведущее место в мире еще перед Великой Отечественной войной. А в наши дни мы уверенно лидируем, ставя на серийное изготовление уникальные конструкции.
Мощность и скорость вращения гидрогенераторов устанавливают заводы-изготовители гидравлических турбин: это зависит от напора и расхода воды. И хотя принципиально схема гидрогенератора за последние годы не изменилась, для создания современных машин инженерам приходится с каждым новым агрегатом решать
Например, долгое время одной из самых больших трудностей в производстве гидрогенераторов являлась нагрузка на пяту опорного подшипника-подпятника. Нужно было так его сконструировать, чтобы он нес на себе до 3500 тонн. В мире подобных аналогов не имелось. И снова выручила «Электросила» — правда, теперь она была уже не одна. На помощь ленинградским инженерам пришли их коллеги из «Уралэлектротяжмаша». Оригинальную конструкцию опорного подпятника спроектировали инженеры завода «Уралэлектроаппарат».
В результате применения самой современной технологии коэффициент полезного действия гидрогенераторов большой мощности стал более 98 %. Успехи гидрогенераторостроителей привели к тому, что наши заводы не только выполняют машины на экспорт, но и производят разработку проектов для зарубежных заводов.
ТЭС
И все же, несмотря на прекрасные успехи гидростроителей, на достижения создателей гидрогенераторов, львиную долю — более 80 % электрической энергии — дают пока тепловые электростанции. И в предвидимом будущем, на ближайшие 20–25 лет, именно они останутся главными производителями электроэнергии.
Долгое время задача развития сети тепловых электростанций осложнялась тем, что главные промышленные центры нашей страны, основная масса населения сосредоточены в европейской части, а энергетические ресурсы — преимущественно в азиатской. Поэтому топливный баланс теплоэлектростанций европейской части СССР был очень напряженным. Экономисты перестраивали его, старались больше использовать на электростанциях в качестве топлива природный газ и мазут (их было легче доставлять).
Но в последнее время положение изменилось. Газ и нефть — слишком ценное химическое сырье, которое год от года все больше используется на технологические нужды. И потому у нас, как и в ряде других стран, ученые активно изучают возможности получения синтетического жидкого топлива из угля. Осваиваются топливные ресурсы Тюменской области, Канско-Ачинские разработки для энергетики Сибири. Повышается интерес строителей электростанций к углю.
Что такое современная тепловая электростанция? Вот ее упрощенная схема: топка котла, куда подаются топливо и окислитель, затем сам котел, в котором вода превращается в пар с температурой около 550 °C. Это наиболее выгодный со всех точек зрения температурный предел. Пар под высоким давлением поступает в неподвижно укрепленные металлические каналы (сопла турбины), в которых температура и давление пара уменьшаются, но зато увеличивается скорость движения его потока.
Струя пара с огромной скоростью, часто выше, чем скорость звука, вырывается из сопел и, меняя направление, по криволинейному каналу давит на лопатки турбины, приводя ротор во вращение. А поскольку ротор турбины на одном валу имеет и ротор электрического генератора, то и вся система приходит во вращение — обычно с постоянной скоростью, равной, как правило, 3000 об/мин. Это определяется выбранной частотой переменного тока — 50 герц, или 50 периодов в секунду.