Рассказы
Шрифт:
Каждый решил во что бы то ни стало разгадать тайну индийской пластинки.
Два рисунка совершенно непонятны. Почему шахматная доска перечеркнута какимито линиями? Что это может обозначать?
Два других рисунка, несомненно, представляли положение из двух разных шахматных партий. В первой партии белые проигрывают. У короля нет ни одной фигуры, а у черных слон и конь да еще сильнейшая проходная пешка (110). Во второй партии явная ничья. Черная ладья против двух связанных коней (111). Мне бросилось в глаза, что в этих. двух позициях, кроме королей,
Давно у нас в кают-компании не было такого шумного сборища. Говорили только о таинственных рисунках.
Старший механик к ужину опоздал, и капитан послал за ним буфетчицу Катю.
Старший механик влетел в кают-компанию с криком.
— Нашел, товарищ капитан! Нашел!
Капитан поднял руку:
— Только после ужина.
Механик, а за ним и все мы принялись за еду.
— Я, конечно, человек не очень ученый… Я практик. Но, по-моему, это гениально, — говорил он, уплетая за обе щеки. — Это просто, так сказать, вклад в науку!
— Но ведь вы же не играете в шахматы! — вскричал доктор.
— И не требуется, — невозмутимо ответил Карташов.
Ужин был поглощен мигом. Волны ревели за бортом, переваливали наш корабль с боку на бок, а мы сгрудились около старшего механика и слушали его объяснения.
— Вы посмотрите, что нарисовано на первом рисунке. Квадрат. Он касается углами сторон шахматной доски. Из чего состоит вся площадь шахматной доски? Она разбита на этот квадрат и четыре одинаковых прямоугольных треугольника. Вы видите эти треугольники? Они по углам.
— Видим! Видим! — закричали мы.
— А теперь посмотрите на второй рисунок. Вы видите эти же треугольники?
— Не видим. Где они?
— Они соприкасаются гипотенузами… попарно.
— Да, да! Верно!
— Треугольники точно такие же, значит, они занимают такую же площадь. Следовательно, оставшаяся на шахматной доске площадь без треугольников на этом втором рисунке точно такая же, как на первом.
— Конечно, та же самая!
— Ну, а посмотрите, из чего она состоит, что это за квадраты? — хитро спросил механик. — Один из них, маленький, построен на малом катете, а другой, побольше, — на большом. А теперь взгляните на квадрат первого рисунка! На чем он построен?
— Ох, черт возьми! На гипотенузе! — закричал доктор.
— Это значит, что площадь квадрата первого рисунка равна площадям двух квадратов второго! Так? — спросил механик, оглядывая нас торжествующим взглядом.
— Квадрат гипотенузы равен сумме квадратов катетов! — вымолвил я вне себя от изумления.
— Я не слышал о таком доказательстве теоремы Пифагора! — восторженно заявил второй помощник.
— Пифагоровы штаны на все стороны равны. Доказать это мне всегда казалось слишком сложным, — признался врач.
— Да, доказательство знаменитого древнегреческого математика, как мне кажется, действительно уступает этой древнеиндийской мудрости, — сказал молчавший до сих пор профессор, участник географической экспедиции. — Это чуть ли не настоящее открытие!
Все мы увлеченно зашумели и тут только обнаружили, что капитана между нами нет. Старший механик был делегирован на мостик, чтобы сообщить о своем открытии.
Я вернулся к себе в каюту и не мог думать о сне. Чемодан по-прежнему старался выпрыгнуть из-под койки, но я не обращал на него внимания. В моем воображении рисовалась таинственная пластинка из слоновой кости, индус с узким темным лицом и пронизывающими глазами и, наконец, рисунки древнего гениального математика, который, может быть, задолго до Пифагора решал геометрические задачи более простым и остроумным способом, чем все последующие поколения!
Но что за шахматные позиции поставил древний математик рядом со своим замечательным доказательством? Какое уважение к древней игре он имел, равняя ее с геометрией!
Я просидел над индийскими позициями целую ночь, весь следующий день и следующую ночь. Кажется, качка не прекращалась. И я все-таки решил индийскую загадку!
Мне открылся целый мир борьбы, неожиданностей, эффектов, ярких, как фейерверк, лукавства, хитрости, смелости, точного расчета и тончайшего остроумия.
Мое сообщение об открытии тайны индусской пластинки было сенсацией. Я обещал разгадку, одинаково интересную для всех.
Кают-компания оказалась набитой до отказа.
Один лишь капитан находился, как всегда, на мостике. Корабль осторожно подбирался к Новой Земле. Мыс Желания, названный так Варенном в ознаменование его страстного и неосуществленного желания пробиться через льды на восток, остался севернее. Туман все еще скрывал от нас берег.
Я обвел глазами присутствующих:
— Черные в первой позиции неизмеримо сильнее. Позиция белых безнадежна. Не правда ли?
Все согласились.
— Тем не менее… Они сделают ничью!
— Не может быть! — изумились все играющие, а неиграющие, привлеченные в кают-компанию слухом об индийской загадке, торопили меня,: чтобы я скорее открыл им тайну пластинки.
Волнуясь, я стал показывать решение удивительной позиции.
Даже неиграющие напряженно смотрели на доску.
Я показывал: 1. d6! Кb5 2. de Kpe5 (112).
— Черные ждут появления белого ферзя, чтобы уничтожить его, но… 3. е8К! — появляется новый, подлинный герой предстоящей увлекательной борьбы. 3…Ch8 4. Kpg8 — чтобы убрать слона с дороги пешки. Черные хитро идут навстречу желанию белых, рассчитывая запереть вражеского короля в ловушке.
4…Кр : е6 5. Кр : h8 Kpf7 6. h7! (113) Готово! Замысел черных выполнен. Но почему белые так кротко послушны? Ведь у черных есть ход 6,а3. Но теперь неожиданно бросается в бой белый конь — 7. Kd6+. Взять его нельзя. Белым… пат! Но черные настолько сильны, что могут даже отдать собственного коня, неизбежно проводя неукротимую пешку! 7…Kpf8 8. К : b5 a2 9. Kd4 (114). Лукавый конь, не правда ли? Он встал так, что черные не могут поставить ферзя. Белым снова будет пат!
— Ишь, ты! — восхитился кто-то из окружающих меня.