Чтение онлайн

на главную

Жанры

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Шрифт:

Одна из первых моделей появилась в 1972 году в Университете Брандейса в Массачусетсе (США). Ее создатель Ира Гилберт преследовал цель обучать студентов основам информатики. Чуть позже появилось несколько версий машины Тьюринга из деталей LEGO. С помощью соединяющихся друг с другом пластиковых кубиков Денис Кузено построил машину Тьюринга, хотя эта модель не была полностью автоматизирована. Для хранения в программируемом микроконтроллере таблицы переходов в ней применялись «умные» кубики LEGO RCX, использующиеся любителями-робототехниками. Еще одна модель машины Тьюринга была построена с помощью LEGO японцем Джо Нагатой. В 2010 году Майк Дейви создал винтажную модель в память о машине, описанной в работе Тьюринга, которая была опубликована в 1936 году. В его устройстве были использованы микроконтроллер Parallax Propeller и SD-карта, на которой хранились данные о

состояниях машины.

Все эти примеры показывают, что практическая реализация на уровне hardware машины Тьюринга не так проста. В то же время существует немало примеров моделирования машины Тьюринга с помощью software, в основном потому что такой вариант гораздо доступнее. Среди самых интересных проектов можно назвать «Turing and Post Machines: C++ Simulators» — подборку программ на языке C++ для моделирования машины разных типов (детерминистской, индетерминистской, универсальной, с ошибками, с разными лентами и др.); симулятор Visual Turing, разработанный для операционной системы Windows и позволяющий увидеть в действии разные машины Тьюринга. Еще один пример простой машины Тьюринга на языке Java называется tmsimbgm. Существует оригинальная программа jkturing Джона Кеннеди из Университета Санта-Моники (США), созданная для операционной системы MS-DOS и обновленная для разных версий Windows, хотя этот вариант моделирования несколько более скромный, чем Visual Turing или Jflap. Очень любопытна модель Uber Turing Machine 2011 года, включающая алфавит для написания алгоритмов. Все эти программы вызывают интерес, потому что представляют собой варианты моделирования машины Тьюринга на универсальной машине Тьюринга — компьютере.

Одной из самых интересных задач является возможность создать машину Тьюринга, используя другую машину — игру «Жизнь». Этот автомат был придуман в 1970 году Джоном Хортоном Конвеем (р. 1937), профессором Кембриджского университета, где учился и Тьюринг. Речь идет о модели компьютера, которая была очень популярна среди любителей науки, особенно после того, как ее описал популяризатор математики Мартин Гарднер (1914-2010) в журнале Scientific American. Игра представляет собой клеточный автомат, то есть двумерную решетку, клетки которой заполнены конечными автоматами, также известными как машины конечных состояний. Речь идет об объекте, находящемся в одном из множества состояний, при этом данное множество конечно. Например, светофор может находиться в течение некоторого времени t в состоянии «зеленый», то есть в одном из трех возможных (красный, желтый, зеленый). Другой пример — нейрон, который может находиться в состоянии покоя или возбуждения. В машине Тьюринга, использующей для моделирования клеточный автомат, с течением времени состояния каждого конечного автомата обновляются. Обновление или расчет, каким будет состояние в следующий отрезок времени (lb + 1), происходит в соответствии с набором правил, известных как правила перехода, меняющие состояние каждого конечного автомата с учетом его актуального состояния и состояний соседних автоматов.

СОЗДАНИЕ МАШИНЫ ТЬЮРИНГА С ПОМОЩЬЮ ИГРЫ «ЖИЗНЬ»

В конце XX века несколько ученых и любителей науки задались вопросом: можно ли построить машины Тьюринга с помощью игры «Жизнь»? Поль Рендель 2 апреля 2000 года создал модель машины Тьюринга с помощью клеточного автомата Джона Хортона Конвея, а 10 февраля 2010 года повторил свой замечательный опыт. В первой модели использовалась решетка 1714 х 1647, с помощью конечных автоматов которой была создана машина Тьюринга. Она имела три возможных состояния и могла обрабатывать на ленте памяти три разных символа. В эксперименте 2010 года была создана модель универсальной машины Тьюринга. Возможность моделирования машины Тьюринга с помощью игры «Жизнь» привела к удивительному выводу: игра «Жизнь» имела аналогичные с компьютером возможности. Более того, любое природное явление, например формирование колец Сатурна или взаимодействие зайцев и волков, можно смоделировать с помощью компьютера. Существуют и другие успешные примеры создания машин Тьюринга с помощью игры «Жизнь», некоторые из них даже получили собственные названия: MRM (Minsky Register Machine) или ее универсальная версия URM, а также CoreWorld, LogiCell и другие.

Один момент из игры «Жизнь».

В игре «Жизнь» каждый конечный автомат граничит с восьмью клетками, окружающими его в направлениях С, Ю, В и 3, а также по диагонали: С-В, Ю-В, Ю-3 и С-3. Считается, что для всех конечных автоматов возможны только два состояния: состояние 0 («мертвые клетки») и состояние 1 («живые клетки»); каждому из них соответствует свой цвет. Состояния конечных автоматов актуализируются с применением следующих правил перехода.

— Правило 1: если состояние конечного автомата tij 0 или 1, его следующее состояние, а именно t+1ij, будет таким же, как предыдущее, если количество соседних клеток в состоянии 1 равно 2:

t+1ij = tij, если сумма соседних клеток (tij) = 2.

— Правило 2: конечный автомат перейдет в состояние 1, если количество соседних клеток в состоянии 1 равно 3, изменение состояния автомата произойдет только при условии, что его состояние было 0 во время t. В противном случае состояние останется равным 1:

t+1ij = 1 если сумма соседних клеток (tij) = 3.

— Правило 3: описывает изменения при разном количестве соседних автоматов, находящихся в состоянии 1. Если количество автоматов рядом в состоянии 1 меньше 2 (то есть один или ни одного) или более 3 (четыре, пять, шесть, семь или восемь), конечный автомат «умирает», принимая значение 0. В этом случае изменение состояния происходит, только если во время t его состояние было 1, в противном случае состояние не будет изменено и останется равным 0:

если сумма соседних клеток (tij) < 2

t+1ij = 0

или сумма соседних клеток (tij) > 3.

При каждой итерации и применении правил перехода к каждому конечному автомату клеточный автомат эволюционирует, при этом появляются рисунки, характерные для данной игры. Образующиеся формы до сих пор вызывают восхищение среди компьютерных любителей. Существует большой выбор программ, позволяющих попробовать игру «Жизнь» (Life32, Xlife 2.0, Life 1.05/1.06, Pro Life, Mcell, dbLife и другие), из них самой впечатляющей является Golly.

АМЕРИКАНСКОЕ ПРИКЛЮЧЕНИЕ

В августе 1936 года Алан Тьюринг направил для публикации в Proceedings of the London Mathematical Society статью под названием «О вычислимых числах, с приложением к проблеме разрешимости». Мы уже говорили о ней, так как именно в этой работе впервые упоминалась машина Тьюринга. Также в статье даются определения понятиям «вычислимое» и «невычислимое» и представлены фундаментальные идеи математики и информатики. По воле случая в том же году Алонзо Чёрч опубликовал в журнале American Journal of Mathematics статью «Одна неразрешимая проблема элементарной теории чисел»; оба ученых разными путями пришли к одним результатам. Ход рассуждений Тьюринга был довольно оригинальным: он рассматривал класс операций, которые в реальном мире мог «механически» выполнять человек (например, клерк, осуществляющий одну и ту же задачу вновь и вновь) или машина (суммируя два числа). Ход рассуждений Чёрча был классическим для абстрактного мира, что традиционно для математики. К сожалению, Тьюринг опубликовал свою статью чуть позже, и это лишило его работу исключительности, так как ему приходилось ссылаться на статью американца. Однако обе статьи представляют теоретические основы создания машины, позже названной компьютером.

Месяц спустя, в сентябре 1936 года, Тьюринг отправился в США. Там он планировал получить докторскую степень и провести два года в Институте перспективных исследований в престижном Университете Принстона. Под руководством Алонзо Чёрча Тьюринг обратился к теме, странной даже сегодня — использованию в математике интуиции. Не теряя времени на философские объяснения, скажем, что интуиция может быть определена как продукт здравого смысла. То есть речь шла о предвосхищении или ментальном видении, которое помогает нам при рассуждениях прийти к умозаключению. Учитывая, что в ходе рассуждений мы связываем факты в логическую цепь, интуиция представляет собой дополнительный компонент, необходимый для разрешения задачи.

Поделиться:
Популярные книги

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце