Разработка ядра Linux
Шрифт:
В общем такое повышение масштабируемости — это очень хорошая вещь, которая позволяет повысить производительность операционной системы Linux на больших и более мощных системах. Чрезмерное увлечение "ростом" масштабируемости может привести к снижению производительности на небольших многопроцессорных и однопроцессорных машинах, потому что для небольших машин не требуются такие мелкоструктурные блокировки, а им приходится иметь дело с большей сложностью и с большими накладными расходами. Рассмотрим связанный список. Первоначальная схема блокировки обеспечивает одну блокировку на весь список. Со временем эта одна блокировка может стать узким местом на очень большой многопроцессорной машине, на которой очень часто обращаются к связанному списку. Для решения проблемы одна блокировка может быть разбита на большое количество
Тем не менее масштабируемость — это важный фактор. Важно с самого начала разрабатывать схему блокировок для обеспечения хорошей масштабируемости. Блокировки на уровне крупных структурных единиц могут стать узким местом даже на машинах с небольшим количеством процессоров. Между крупноструктурными и мелкоструктурными блокировками очень тонкая грань. Слишком крупноструктурные блокировки приводят к большому уровню конфликтов, а слишком мелкоструктурные — к напрасным накладным расходам, если уровень конфликтов при захвате блокировок не очень высокий. Оба варианта эквивалентны плохой производительности.
Необходимо начинать с простого и переходить к сложному только при необходимости. Простота — это ключевой момент.
Блокировки в вашем коде
Обеспечение безопасности кода при SMP-обработке — это не то, что можно откладывать на потом. Правильная синхронизация, блокировки без тупиковых ситуаций, масштабируемость и ясность кода- все это следует учитывать при разработке с самого начала и до самого конца. При написании кода ядра, будь то новый системный вызов или переписывание драйвера устройства, необходимо, прежде всего, позаботиться об обеспечении защиты данных от конкурентного доступа.
Обеспечение достаточной защиты для любого случая — SMP, вытеснение кода ядра и так далее — в результате приведет к гарантии того, что все данные будут защищены на любой машине и в любой конфигурации. В следующей главе будет рассказано о том, как это осуществить.
Теперь, когда мы хорошо подкованы в теории параллелизма, синхронизации и блокировок, давайте углубимся в то, какие существуют конкретные инструменты, предоставляемые ядром Linux, для того чтобы гарантировать отсутствие состояний конкуренции и тупиковых ситуаций в коде.
Глава 9
Средства синхронизации в ядре
В предыдущей главе обсуждались источники и решения проблем, связанных с конкуренцией за ресурсы. К счастью, в ядре Linux реализовано большое семейство средств синхронизации. В этой главе обсуждаются эти средства, интерфейсы к ним, а также особенности их работы и использования. Эти решения позволяют разработчикам писать код, в котором отсутствуют состояния конкуренции за ресурсы.
Атомарные операции
Атомарные операции (atomic operations) предоставляют инструкции, которые выполняются атомарно, — т.е. не прерываясь. Так же как и атом вначале считался неделимой частицей, атомарные операции являются неделимыми инструкциями. Например, как было показано в предыдущей главе, операция атомарного инкремента позволяет считывать из памяти и увеличивать на единицу значение переменной за один неделимый и непрерывный шаг. В отличие от состояния конкуренции за ресурс, которая обсуждалась в предыдущей главе, результат выполнения такой операции всегда один и тот же, например, как показано в следующем примере (допустим, что значение переменной i
Поток 1 Поток 2
Результирующее значение 9 — правильное. Параллельное выполнение двух атомарных операций с одной и той же переменной невозможно никогда. Таким образом, для такой операции инкремента состояние конкуренции за ресурс возникнуть не может.
Ядро предоставляет два набора интерфейсов для выполнения атомарных операций: один — для работы с целыми числами, а другой — для работы с отдельными битами. Эти интерфейсы реализованы для всех аппаратных платформ, которые поддерживаются операционной системой Linux. Большинство аппаратных платформ поддерживают атомарные операции или непосредственно, или путем блокировки шины доступа к памяти при выполнении одной операции (что в свою очередь гарантирует, что другая операция не может выполниться параллельно). Это как-то позволяет справиться с проблемой в случае аппаратных платформ, таких как SPARC, которые не поддерживают базовых машинных инструкций для выполнения атомарных операций.
Целочисленные атомарные операции
Средства выполнения атомарных операций с целыми числами работают с типом данных
Кроме того, что тип
Рис. 9.1. Структура 32-битового типа
Блокировка используется для предотвращения параллельного доступа к переменной атомарного типа, так как для аппаратной платформы SPARC отсутствует соответствующая поддержка на уровне машинных инструкций. Следовательно, на машинах SPARC могут быть использованы только 24 бит. Хотя код, который рассчитан на использование полного 32-битового диапазона значений, будет работать и на машинах других типов, он может приводить к странным и коварным ошибкам на машинах типа SPARC, и так делать не нужно. В последнее время умные хакеры додумались, как для аппаратной платформы SPARC обеспечить тип