Разум, машины и математика. Искусственный интеллект и его задачи
Шрифт:
* * *
НЕЧЕТКАЯ ЛОГИКА
Нечеткая логика — раздел математической логики, приближающий логические действия и методы к естественным, человеческим рассуждениям. Как правило, в реальной ситуации ничто не делится на белое и черное, но в классической логике, в частности в булевой, переменные могут быть только истинными или ложными, что вынуждает рассматривать лишь крайности.
К примеру, на вопрос, хорошо или плохо играет вратарь футбольной команды из первого дивизиона чемпионата Казахстана, дать однозначный ответ нельзя: в сравнении с элитой мирового футбола он наверняка не слишком хорош, но по сравнению с вратарем моей районной команды он будет первоклассным игроком.
Поэтому переменные нечеткой логики принимают значения не «истина» или «ложь», а вещественные значения, заключенные на интервале от 0 до 1, где значению 1
* * *
Для решения задач такого типа обычно используются классические алгоритмы поиска, применяемые в искусственном интеллекте, в частности поиск с возвратом (back-tracking) или метод ветвей и границ (branch-and-bound). Оба этих алгоритма действуют схожим образом: по сути, они разворачивают комбинаторное дерево и обходят его в поисках оптимального варианта. Развертывание комбинаторного дерева происходит достаточно просто. На первом этапе создается дерево, содержащее все возможные планы (вспомните понятия, которые мы объяснили в первой главе, рассказывая об интеллектуальном алгоритме, способном определять оптимальные ходы в шахматной партии). Далее с помощью интеллектуальных алгоритмов последовательно отсекаются те ветви, которым соответствуют нереальные планы либо планы, нарушающие ограничения или ведущие к неоптимальному решению.
Важное отличие метода поиска с возвратом от метода ветвей и границ заключается в том, что первый метод состоит в обходе дерева в глубину, второй — в обходе в ширину. Это различие крайне важно: в зависимости от представления задачи отсечение той или иной ветви может иметь разную эффективность.
Последовательное отсечение ветвей дерева по мере обхода абсолютно необходимо — в противном случае, как и почти во всех комбинаторных задачах, число планов, а значит, и число ветвей, будет так велико, что его нельзя будет обойти за разумное время. Чтобы ускорить отсечение ветвей, в методах, основанных на обходе дерева, обычно используются так называемые эвристики (или формальное представление интуитивных понятий), которые может применить специалист предметной области, чтобы определить: та или иная ветвь не приведет к нужному результату, и ее необходимо отсечь как можно скорее. Разумеется, если мы отсечем ветвь, которая соответствует неосуществимому плану, на раннем этапе алгоритма, то можем сэкономить несколько часов вычислений — с переходом на более высокие уровни число вариантов, которые необходимо проанализировать, возрастает экспоненциально.
Простой пример дерева планирования для игры «крестики-нолики».
* * *
ТЕОРЕМА «БЕСПЛАТНОГО ОБЕДА НЕ БЫВАЕТ»
Теорема под названием «бесплатного обеда не бывает» (no-free lunch) гласит: не существует алгоритма, позволяющего получить оптимальные решения всех возможных задач. Теорема получила свое любопытное название на основе метафоры о стоимости блюд в различных ресторанах. Допустим, что существует определенное число ресторанов (каждый из них обозначает определенный алгоритм прогнозирования), где в меню различным блюдам (каждое блюдо обозначает определенную задачу прогнозирования) сопоставлена цена (или качество решения этой задачи, которое позволяет получить рассматриваемый алгоритм). Человек, который любит поесть и при этом не прочь сэкономить, может определить, какой ресторан предлагает его любимое блюдо по самой выгодной цене. Вегетарианец, сопровождающий этого обжору, наверняка обнаружит, что его любимое вегетарианское блюдо в этом ресторане стоит намного дороже. Если обжора захочет полакомиться бифштексом, он выберет ресторан, где бифштекс подают по самой низкой цене. Но у его друга-вегетарианца при этом не останется другого выбора, кроме как заказать единственное вегетарианское блюдо в этом ресторане, пусть даже по заоблачной цене. Это очень точная метафора ситуации, когда необходимость использования определенного алгоритма для решения конкретной задачи приводит к гарантированно неоптимальным результатам. Исследователи прилагают огромные усилия для создания супералгоритма или суперметода, позволяющего составить идеальный план, но в конечном итоге неизменно
Теорема имеет еще одно важное следствие: если мы тратим много сил на корректировку алгоритма, чтобы добиться идеальных результатов для определенных исходных данных, эти корректировки гарантированно приведут к ухудшению работы алгоритма для другого множества данных. Вывод: любой алгоритм будет либо работать идеально для небольшого числа случаев и плохо — во всех остальных, либо будет демонстрировать посредственные результаты во всех случаях. соответствует неосуществимому плану, на раннем этапе алгоритма, то можем сэкономить несколько часов вычислений — с переходом на более высокие уровни число вариантов, которые необходимо проанализировать, возрастает экспоненциально.
Остров Кипр, Средиземное море, январь 1997 года. Власти Кипра и Греции объявили об установке двух зенитно-ракетных комплексов С-300 класса «земля-воздух», закупленных в России, что стало серьезным усилением вооруженных сил обоих государств в рамках единого оборонного пространства.
Представители российского министерства обороны подтвердили, что переданные Кипру комплексы С-300 предназначены для выполнения исключительно оборонительных задач и никак не нарушат неустойчивый баланс сил между греческими и турецкими военными на острове.
Зенитно-ракетный комплекс С-300 на военном параде в России..
Турция, январь 1997 года. Турецкое правительство незамедлительно заявило, что установка ракет является серьезной угрозой безопасности страны, и объявило о принятии встречных мер. Кроме того, турецкие власти сообщили, что если ракеты коснутся кипрской земли, то это станет сигналом к началу военных действий на острове.
В ответ правительство Кипра перевело вооруженные силы в режим максимальной боевой готовности, который был снят лишь в июне того же года.
Весна 1997 года. Греческое правительство, в свою очередь, сочло, что установка ракет С-300 не поможет сдержать турецкую угрозу, так как ракеты были открыты для удара турецких войск и не уцелели бы в случае нападения. Следовательно, власти Греции посчитали, что любые попытки дестабилизировать ситуацию в регионе будут предприняты турецкой стороной, так как комплексы С-300 применяются исключительно для обороны.
В этот же период была проведена мобилизация греческой армии для поддержки кипрских войск на случай атаки со стороны Турции. Российские власти сохраняли нейтралитет, однако заявили, что на продажу двух комплексов С-300 не повлияет какое-либо вмешательство извне.
Турция начала интенсивные переговоры с союзниками по НАТО, но безуспешно. Затем турецкие власти решили начать сотрудничество с Израилем и обучить войска противодействию комплексам С-300.
Нестабильный регион в Восточном Средиземноморье.
Сентябрь 1997 года. Турецкий военный флот начал рейды в Восточном Средиземноморье с целью обнаружения судов, в частности российских военных кораблей, чтобы предотвратить доставку ракет. Россия и Греция оповестили Турцию о начале военных действий в случае атаки или морской блокады Кипра.
Декабрь 1997 года. Россия сосредоточила значительные военно-морские силы в регионе, в том числе авианосцы и подводные лодки. Предположительно их задачей была перевозка комплексов С-300 и уничтожение турецкого флота в случае попытки перехватить груз.
Январь 1998 года. Под давлением США и Великобритании и перед лицом турецкой угрозы власти Греции в итоге решили отказаться от установки ракет на Кипре. Ракеты С-300 были размещены на греческом острове Крит, а на Кипр были доставлены другие, менее мощные комплексы, переданные греческими властями правительству Кипра в обмен на С-300.
Результатом конфликта, который мог завершиться трагически и иметь самые серьезные последствия, стала дестабилизация отношений между Турцией и Кипром. Позиции греческого правительства, напротив, не пострадали.