Чтение онлайн

на главную

Жанры

Разведка далеких планет

Сурдин Владимир Георгиевич

Шрифт:

Исторически поддержание формы оптических элементов телескопа основывалось на их жесткости. Как мы уже знаем, к концу XIX в. телескопы-рефракторы приблизились к своему пределу: с ростом диаметра и веса линз поддерживать их форму становилось все сложнее, поскольку крепление линзы возможно лишь по ее периметру. Когда диаметр линзовых объективов достиг 1 м, технические возможности оказались исчерпаны: два крупнейших в мире линзовых телескопа: рефракторы Ликской (91 см) и Йерксской (102 см) обсерваторий – никогда не будут превзойдены, во всяком случае до тех пор, пока линзы делают из стекла, а сами телескопы располагаются на поверхности Земли, в условиях обычной силы тяжести.

Рис. 3.28. Принципиальная схема системы активной оптики, применяемой на Европейской южной обсерватории.

Проблему деформации объектива удалось решить путем перехода к телескопам-рефлекторам: жесткая монтировка телескопа поддерживает зеркальный диск объектива

по всей его нижней поверхности, препятствуя изгибу. Теперь такие оптические системы называют пассивными. Вес зеркала удавалось значительно снизить без потери жесткости, придав ему форму пчелиных сот и оставив сплошной только верхнюю, зеркальную поверхность. Наконец, для наиболее крупных зеркал диаметром 2,5–6,0 м была разработана механическая система разгрузки. Она поддерживает зеркало снизу в нескольких точках так, что сила упора зависит от положения телескопа: чем ближе к зениту смотрит телескоп, а значит, чем более горизонтально расположено его главное зеркало, тем сильнее упираются в него снизу поддерживающие «пальцы», не позволяя зеркалу прогибаться. Фактически это стало первым шагом к системе активной оптики.

Рис. 3.29. Оправа главного зеркала одного из телескопов VLT. Видны выступающие вверх «пальцы» 150 актюаторов, управляющих формой 8,2-метрового зеркала.

Главная особенность современных астрономических систем активной оптики – электронная линия обратной связи, позволяющая контролировать качество изображения и при необходимости исправлять его, управляя деформацией главного зеркала и перемещая вторичное зеркало телескопа. Контроль выполняется по изображению гидировочной звезды, которая выбирается на небе вблизи от изучаемого объекта и одновременно используется для точного ведения телескопа за объектом (гидирования). Размещенный у выходного зрачка телескопа анализатор волнового фронта исследует изображение звезды, пропущенное через матрицу из множества небольших линз (например, 30x30 линз). Каждая линза строит изображение звезды, которое регистрируется ПЗС-камерой. Разработано несколько способов выявления кривизны волнового фронта: по взаимному положению изображений, построенных каждой линзой, по степени их контраста и др. Чтобы результат анализа не зависел от случайного атмосферного дрожания изображения, измерения накапливаются и усредняются на интервалах в 20–30 секунд. По данным анализатора волнового фронта компьютер вырабатывает управляющие сигналы, которые усиливаются и передаются на многочисленные механические домкраты (актюаторы), упирающиеся снизу с необходимым усилием в главное зеркало, а также слегка перемещающие вторичное зеркало.

Рис. 3.30. Актюаторы главного зеркала VLT.

Рис. 3.31. Зеркало диаметром 8,3 м японского телескопа «Субару» в процессе монтажа.

При наличии системы активной оптики требования к главному зеркалу телескопа меняются принципиально: оно должно быть не предельно жестким, как раньше, а достаточно мягким, чтобы поддаваться управлению. Поэтому у современных крупных телескопов главное зеркало либо относительно тонкое (например, при диаметре 8–9 м имеет толщину всего 20 см), либо состоит из нескольких независимых элементов (например, у 10-метровых телескопов «Кек-1» и «Кек-2» главное зеркало составляют 36 гексагональных двухметровых пластин).

Рис. 3.32. Телескоп «Субару» в башне на вершине Мауна-Кеа. При диаметре зеркала 8,3 м телескоп весит 500 т. Фокусное расстояние главного зеркала 15 м.

Тонкое и легкое зеркало объектива позволяет существенно облегчить всю конструкцию телескопа. К тому же такое зеркало быстро принимает температуру окружающего воздуха, а это снимает проблему термических деформаций.

Рис. 3.33. Зеркало телескопа «Субару» в процессе тестирования (до алюминирования). Изготовлено оно из стекла ULE (ultra-low thermal expansion glass). Обратите внимание на его малую толщину – всего 20 см. Вес зеркала 22,8 т. Его формой управляет 261 актюатор.

Первая система активной оптики была реализована в 1989 г. на 3,5-метровом «Телескопе новых технологий» (New Technology Telescope, NTT) Европейской южной обсерватории (Ла-Силья, Чили). В 1992 г. подобная система была создана для управления главным сегментным зеркалом 10-метрового телескопа «Кек-1» (Мауна-Кеа, Гавайи). Затем полностью активной оптической системой были оснащены четыре главных 8,2-метровых телескопа с тонкими монолитными зеркалами, входящие в состав «Очень большого телескопа» (VLT) Европейской южной обсерватории (Паранал, Чили). Сейчас все наземные телескопы диаметром 8-10 м имеют систему активной оптики. В будущем такие системы станут применяться и на крупных космических многозеркальных телескопах, подверженных тепловой деформации. При этом они будут давать идеальные изображения, качество которых ограничено только дифракцией света.

Но у наземных телескопов есть свой враг – атмосфера. Хотя при использовании активной оптики их собственное качество становится практически идеальным, качество получаемого ими изображения ограничено нестабильностью атмосферы, для подавления которой предназначена система адаптивной оптики. А что это такое?

Адаптивная оптика

Система адаптивной оптики – это автоматическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, построенного телескопом. Сейчас системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для увеличения четкости изображения. Они особенно необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е гг. и приобрела особый размах в 1980-е гг. в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы адаптивной оптики начали работать на крупных астрономических телескопах в районе 2000 г.

На первый взгляд кажется, что исправить атмосферное искажение изображений в принципе невозможно. Откуда мы знаем, каким было исходное изображение и как именно его испортила неоднородная атмосфера? Тем не менее это возможно! Давайте познакомимся с принципом работы этой удивительной системы. Это величайшее достижение оптической астрономии, и оно достойно подробного рассмотрения.

Атмосферные помехи. Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму, но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, он становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд, а при наблюдении в телескоп вместо «точечной» звезды видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты – Луна и Солнце, планеты, туманности и галактики – теряют резкость, у них становятся неразличимыми мелкие детали. Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей равен 2–3'', на лучших обсерваториях он изредка составляет 0,5''. Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1'', а с объективом в 5 м – 0,02''. Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за искажающего влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2–3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой. Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя. Вообще говоря, задачу «получить изображение лучше, чем позволяет атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения эти искажения на короткое время становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие – нет.

Применение в астрономии фотопластинок позволило выявить множество новых объектов, недоступных глазу из-за их низкой яркости. Однако фотоэмульсия при слабой освещенности имеет очень малую чувствительность к свету, поэтому в начале XX в. при астрономическом фотографировании требовались многочасовые экспозиции. За это время атмосферное дрожание заметно снижает качество изображения по сравнению с визуальным. Некоторые астрономы пытались бороться с этим явлением, самостоятельно выполняя функции активной и отчасти адаптивной оптических систем. Так, американские астрономы Джеймс Килер (1857–1900) и Вальтер Бааде (1893–1960) регулировали во время экспозиции фокус телескопа, наблюдая с очень большим увеличением (около 3000 раз) форму комы звезды на краю поля зрения. А известный конструктор телескопов Джордж Ричи разработал особую фотокассету на подвижной платформе – так называемую «кассету Ричи», с помощью которой можно быстро выводить фотопластинку из фокуса телескопа, заменяя ее фокусировочным прибором (нож Фуко), а затем возвращать кассету точно в прежнее положение. Во время экспозиции Ричи несколько раз отодвигал кассету, когда чувствовал, что нужно поправить фокус. К тому же Ричи непрерывно наблюдал за качеством изображения и его положением в окуляр, размещенный рядом с кассетой, при этом он постоянно поправлял положение кассеты и научился быстро закрывать затвор, когда изображения становились плохими. Эта работа требовала от астронома очень высокого напряжения, но зато Ричи получил таким способом великолепные фотографии спиральных галактик, на которых впервые стали видны отдельные звезды; эти прекрасные снимки воспроизводились во всех учебниках XX в. Однако широкого применения кассета Ричи не получила ввиду большой сложности работы с ней.

Поделиться:
Популярные книги

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4