Ритм Вселенной. Как из хаоса возникает порядок

на главную

Жанры

Поделиться:

Ритм Вселенной. Как из хаоса возникает порядок

Шрифт:

Научный редактор Александр Минько

Издано с разрешения автора при содействии Brockman, Inc.

Все права защищены. Никакая часть настоящего издания ни в каких целях не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая фотокопирование и запись на магнитный носитель, если на это нет письменного разрешения издателя.

* * *

Посвящается Арту Уинфри, наставнику, источнику вдохновения и другу

Предисловие

В сердце Вселенной ощущается постоянное, неуклонное биение: звучание синхронизированных циклических процессов. Это биение буквально пропитывает природу на всех уровнях, начиная с атомного ядра и заканчивая космосом. Каждый вечер вдоль

приливных рек Малайзии тысячи светлячков собираются в мангровых лесах и мерцают в унисон, причем в их среде нет какого-либо лидера или внешнего источника, который задавал бы ритм этого мерцания. Триллионы электронов маршируют в ногу в сверхпроводнике, обеспечивая совершенно беспрепятственное прохождение тока по нему: сопротивление сверхпроводника оказывается равным нулю. В Солнечной системе гравитационный синхронизм может приводить к выбрасыванию огромных валунов из пояса астероидов в направлении Земли: считается, что катастрофическое столкновение одного такого метеорита с Землей погубило динозавров. Даже человеческое тело представляет собой симфонию, поддерживаемую скоординированным срабатыванием тысяч клеток, задающих ритм сокращений сердца человека. В каждом случае эти «подвиги» синхронизма происходят спонтанно, как если бы сама природа проявляла сверхъестественное, необъяснимое стремление к порядку.

С давних пор это явление представляет для ученых неразрешимую загадку: существование спонтанного порядка во Вселенной ставит их в тупик. На первый взгляд, законы термодинамики диктуют обратное: подчиняясь им, природа должна была бы неуклонно деградировать в сторону все большего беспорядка, все большей энтропии. Однако мы наблюдаем вокруг себя множество величественных структур – галактики, клетки, экосистемы, людей, – которым удается каким-то образом собирать самих себя. Эта загадка не дает покоя научному сообществу и в наши дни.

Лишь в очень немногих ситуациях у нас есть понимание того, каким образом порядок возникает сам по себе. Первой из таких ситуаций был особый вид порядка в физическом пространстве, связанный с идеально повторяющимися структурами. Это тот вид порядка, который возникает, когда температура воды опускается ниже точки замерзания и триллионы молекул воды спонтанно образуют жесткий симметричный кристалл льда. Однако объяснение порядка во времени оказалось более проблематичным. Даже простейший вариант, когда одни и те же события наступают одновременно, оказался трудноуловимым. Это тот порядок, который мы называем синхронизмом.

Поначалу может показаться, что здесь, вообще говоря, нечего объяснять. Вы можете договориться со своим приятелем встретиться в ресторане, и если оба вы достаточно пунктуальны, то ваше появление в ресторане будет синхронизированным. Столь же тривиальный вид синхронизма запускается реакцией на какой-либо общий стимул. Стая голубей, напуганных громким звуком из выхлопной трубы автомобиля, поднимется в воздух практически одновременно, причем в течение какого-то времени они могут даже синхронно взмахивать своими крыльями, однако это происходит лишь потому, что все они одинаково реагируют на один и тот же звук. Невозможно ведь подозревать, что голуби каким-то образом договорились между собой о ритме взмахов крыльями; к тому же синхронность их действий пропадает уже спустя несколько секунд после взлета. Другие виды кратковременного синхронизма могут возникать по чистой случайности. Воскресным утром колокола двух разных церквей могут случайно зазвонить в одно и то же время, и этот синхронизм будет поддерживаться в течение какого-то (непродолжительного) времени, после чего они начнут звонить вразнобой. Еще одна возможная ситуация: сидя в своем автомобиле на перекрестке в ожидании разрешающего сигнала светофора, вы можете заметить, что указатель поворота автомобиля, стоящего впереди вас, мигает практически синхронно с указателем поворота вашего автомобиля – и так может продолжаться в течение нескольких секунд. Такой синхронизм является чистой случайностью и его обсуждение не представляет для нас никакого интереса.

Несомненный интерес представляет для нас синхронизм, сохраняющийся длительное время. Когда два события наступают одновременно и этот синхронизм поддерживается в течение долгого времени, то говорить о случайном характере такого синхронизма уже не приходится. Более того, в силу каких-то причин такой непрекращающийся синхронизм доставляет нам, людям, удовольствие. Нам нравится танцевать вместе, петь хором, играть в оркестре. В своей наиболее утонченной форме постоянный синхронизм может представлять собой поистине захватывающее зрелище, как, например, солдаты, марширующие на воинском параде, или выступления команд на соревнованиях по синхронному плаванию. Ощущение высокого исполнительского мастерства усиливается, когда зрители не знают, каких очередных чудес синхронизма им стоит ожидать в следующий момент времени. Мы интерпретируем постоянный синхронизм как признак кропотливого труда, высокого мастерства, точного планирования и хореографического искусства.

Но когда синхронизм наблюдается между неодушевленными объектами, наподобие электронов или биологических клеток, это кажется почти невероятным. Удивительно наблюдать совместные действия живых существ – тысяч светлячков, стрекочущих в унисон летней ночью, или косяков рыб, совершающих одинаковые элегантные волнообразные движения, – но еще более удивительно видеть скопления неодушевленных объектов, которые сами по себе совершают синхроные действия. Эти явления столь необъяснимы, что кто-то даже отказывается верить в их существование, приписывая их иллюзиям, случайным совпадениям или ошибкам восприятия. Другие же попросту впадают в мистицизм, пытаясь объяснить синхронизм действием сверхъестественных сил космоса.

Буквально до последнего времени изучением синхронизма занимались энтузиасты-одиночки – биологи, физики, математики, астрономы, инженеры и социологи, – каждый из которых замыкался в своей узкой области знаний, действуя по независимым друг от друга (на первый взгляд) направлениям исследования. Мало-помалу на основе фрагментарных представлений, выработанных в этих и других узких дисциплинах, начала формироваться наука о синхронизме. Эта новая наука сосредоточивается на изучении так называемых «связанных осцилляторов». Группы светлячков, планет или клеток-задатчиков ритма представляют собой совокупности осцилляторов – объектов, автоматически совершающих циклические действия, то есть действия, повторяющиеся снова и снова через более или менее регулярные интервалы времени. Светлячки мигают, планеты движутся по определенным орбитам, клетки-задатчики ритма (ритмоводители сердца) срабатывают одновременно. Говорят, что два или большее число осцилляторов связаны между собой, если некий физический или химический процесс позволяет им влиять друг на друга. Светлячки взаимодействуют между собой с помощью света. Планеты влияют друг на друга посредством силы гравитации. Клетки сердца передают туда и обратно электрические импульсы. Как следует из этих примеров, природа использует каждый доступный ей канал, чтобы предоставить возможность своим осцилляторам взаимодействовать друг с другом. Результатом такого взаимодействия зачастую оказывается синхронизм, при котором все осцилляторы начинают действовать одинаково.

Тем из нас, кто работает в этой зарождающейся области науки, задают примерно одни и те же вопросы. Как именно связанные осцилляторы синхронизируют свои действия – и при каких условиях? Когда такой синхронизм оказывается невозможным, а когда он оказывается неизбежным? Какие другие способы организации могут возникнуть, когда синхронизм пропадает? И какими могут быть практические применения знаний, которые накапливаются в этой области науки?

Эти вопросы волнуют меня на протяжении последних двадцати лет – сначала как выпускника Гарвардского университета, затем как профессора прикладной математики в Массачусетском технологическом институте и Корнельском университете, где я по сей день занимаюсь преподавательской и исследовательской деятельностью в области теории сложности и хаоса. Однако интерес к изучению циклических процессов возник у меня еще раньше, когда в бытность мою студентом-первокурсником меня посетило озарение. Для одного из первых научных экспериментов м-р Ди Курцио вручил каждому из нас по секундомеру и маленькому игрушечному маятнику, который представлял собой хитроумное устройство с выдвижным («телескопическим») стержнем, длину которого можно было пошагово регулировать; это устройство напоминало старые модели подзорных труб, которые вы наверняка видели в фильмах про пиратов. Наша задача заключалась в изменении периода колебаний маятника – времени, которое требуется для совершения одного полного колебания маятника, – и вычислении зависимости периода колебаний маятника от длины стержня, на котором он крепится. Иными словами, нам предстояло выяснить, как поведет себя маятник при удлинении стержня: станет колебаться быстрее, медленнее или период его колебаний останется прежним. Чтобы ответить на этот вопрос, мы «настроили» наши маятники на минимальную длину, измерили период его колебаний и отобразили результат на листе бумаги, разлинованном в клетку. Затем мы несколько раз повторили эксперимент, каждый раз увеличивая длину стержня на одно деление. Когда я отобразил на листе бумаги четвертую или пятую точку своего будущего графика, я заметил, что он похож на параболическую кривую. Оказалось, что колебания маятника подчиняются параболическому закону. (Что представляет собой парабола, мне было известно из курса алгебры.) Сделав это открытие, я испытал смешанные чувства удивления и страха. На меня снизошло озарение: я узнал о существовании тайного и восхитительного мира, который можно было исследовать лишь математическими методами. Я влюбился в этот мир буквально с первого взгляда; со временем мое восхищение этим миром лишь окрепло.

С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.

Популярные книги

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Ученик. Второй пояс

Игнатов Михаил Павлович
9. Путь
Фантастика:
фэнтези
боевая фантастика
5.67
рейтинг книги
Ученик. Второй пояс

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII