Самоучитель по радиоэлектронике
Шрифт:
Рис. 4.3. Включение трансформатора тока
Например, ток силой 0,5 А в первичной обмотке создаст ток 5 мА во вторичной обмотке при 100 витках провода и напряжении 0,5 В на выходе усилителя. Это значение соответствует номиналу резистора, указанному на рис. 4.3. Форма сигнала сохраняется, поэтому,
4.1.4. Измерение переменного тока или напряжения
Измерение и обработка переменной величины обычно выполняются с помощью преобразователя переменного сигнала в постоянный. Обыкновенный диод в сочетании с конденсатором выполняет операции выпрямления и фильтрации сигнала. Но в действительности речь идет об измерении максимальной (пиковой) величины сигнала. При этом не учитываются ни форма сигнала, ни его частота. Следовательно, данный принцип может успешно применяться исключительно для тех сигналов, у которых изменяется только амплитуда, но не форма. В других случаях лучше использовать специализированные схемы или аналого-цифровое преобразование с последующей математической обработкой.
Классический мультиметр, которым измеряют переменные сигналы, рассчитан на индикацию эффективных значений и обеспечивает правильные показания только для синусоидальных сигналов. Показания для сигналов другой формы содержат ошибки тем более значительные, чем сильнее форма измеряемого сигнала отличается от синусоиды. Таким образом, на выходе преобразователя 12/220 В, построенного на трансформаторе с двумя коммутируемыми транзисторами, будет индицироваться напряжение, существенно превышающее его истинное значение. Для корректного измерения следует использовать осциллограф, который одновременно показывает и амплитуду, и форму сигнала.
4.1.5. Форма измеряемого сигнала
На рис. 4.4 представлены формулы для определения действующих (эффективных) значений сигналов различной формы. Эти формулы действительны как для токов, так и для напряжений. В них используются пиковые (максимальные) значения сигналов и коэффициент заполнения (величина, обратная скважности).
Рис. 4.4. Формулы для определения действующих значений напряжения гармонических сигналов
4.2. Работа с мультиметром
В своей деятельности радиолюбителю придется использовать множество контрольных приборов различного типа для тестирования, измерения и обнаружения неисправностей в электронном оборудовании.
Мультиметр является универсальным прибором, который используется практически каждый день. Имеется два основных типа мультиметров для общего использования: аналоговые и цифровые.
4.2.1. Аналоговые мультиметры
В аналоговом мультиметре (тестер или стрелочный авометр — ампервольтомметр) применяется стандартная измерительная шкала с указателем. Значение напряжения, тока или сопротивления отсчитываются от позиции указателя на измерительной шкале. Определение показаний аналогового мультиметра очень похоже на определение времени по стрелкам на часах. В случае часов приходится интерполировать число секунд между маркировками минут. Точно так же при работе с аналоговым мультиметром нужно определять или оценивать фактическое значение путем интерполирования между маркировками напряжений, токов или сопротивлений на измерительной шкале.
Аналоговые мультиметры все еще широко используются, поскольку они недороги и надежны в работе. Их основным недостатком является то, что они имеют невысокую точность и большой разброс при измерениях. В большинстве случаев погрешность аналогового мультиметра составляет менее 2 % от пределов измерения по шкале прибора, что вполне приемлемо в большинстве практических применений. Тем не менее во многих случаях желательны более точные измерения.
4.2.2. Цифровые мультиметры
Цифровой мультиметр подобен аналоговому в том отношении, что он также является универсальным измерительным прибором, способным измерять напряжение, ток и сопротивление. Основным отличием является то, что результаты измерений выводятся на индикаторную панель десятичной цифровой индикации. В большинстве цифровых ров имеется жидкокристаллический индикатор (дисплей). Значение тока, напряжения или сопротивления выводится в виде десятичных цифр на семисегментные индикаторы. Индикация в более старых цифровых мультиметрах осуществляется с использованием индикаторов на светоизлучающих диодах.
В дополнение к удобствам, связанным с использованием десятичных дисплеев, цифровые мультиметры обеспечивают также более высокую точность измерений. Хороший цифровой мультиметр обеспечивает точность измерений 0,5–1 % от фактического значения. Такие точные измерения предпочтительны при тестировании электронных схем, поскольку они дают наилучшую информацию о состояниях схем. Цифровые мультиметры имеют также более высокую разрешающую способность измерительной системы, что обеспечивает более высокоточные измерения.
Большинство мультиметров позволяют также измерять основные параметры транзисторов: коэффициент передачи тока базы h21Э, обратный ток коллектора IКО и обратный ток эмиттера IЭО.
При использовании мультиметра для измерения напряжений синусоидальных сигналов необходимо иметь в виду, что представляемая на индикации величина является эффективным или среднеквадратическим значением. Необходимо знать также, что мультиметр имеет ограничение по высокой частоте. Это предельное значение частоты варьируется от прибора к прибору, однако оно не превышает обычно нескольких килогерц.