Сдвиг Эпох
Шрифт:
Нам наиболее интересны эффекты, происходящие в месте, называемом “Вихревой Столб”. Как указывает Чайлдресс, “люди, стоящие рядом со столбом, начинают вращаться как юла”. Базируясь на этой информации, можно видеть действие спиралевидной природы гравитационных полей! Также, в книге Чарльза Берлица Бермудский Треугольник существенен параграф, где приводятся сообщения моряков, сталкивающихся со спиралевидными движениями компаса, становившимися быстрее или медленнее в зависимости от того, как близко они находились от центра вихря. В этих конкретных точках спиралевидная энергия вихря
Также интересно: хозяева Вихря Орегона/Таинственного Дома не разрешают пользоваться видеокамерами. Они не объяснили Чайлдрессу причину, только заметили, что разрешается снимать фотоаппаратом. Это увязывается с информацией Мунка об Озере Рок и подтверждает аналогичное действие вихрей на электронику. И снова напоминаем читателю: подобные эффекты, оказываемые НЛО, описаны в тысячах свидетельств. Желающие поехать и посмотреть своими глазами на Вихрь Орегона могут связаться с хозяевами по адресу: Oregon Vortex/House of Mystery, 4340 Sardine Creek Road, Gold Hill, OR 97525 и телефону (541) 855-1543. Посещения открыты с апреля по октябрь.
Итак, имея дополнительную физическую информацию, подтверждающую теории диамагнетизма д-ра Ричарда Лефорса Кларка, следует полагать, что Глобальная Решетка — нечто большее, чем просто прямые линии. У нас есть вышеприведенные свидетельства о дугообразных структурах суши, и сейчас мы получили сведения о спиралевидных аномальных гравитационных эффектах, происходящих в разных местах. Хотя вышеприведенная схема диамагнитного поля изображена в двух измерениях, д-р Кларк подчеркивает: на самом деле силовые линии представляют собой трехмерные спирали. Очень важно изучить эти спирали, ибо они формируют основу всех Платоновых Тел, обсуждению которых мы уделили так много времени. Спирали четко просматриваются на расширенной версии “Тройная Серия Юлии” — круге на полях, появившемся в 1996 году:
В предыдущих главах мы обсудили, что универсальные спирали энергии в основном делятся на две основные категории, а именно, квадратный корень из двух и фи. Один из наших постулатов следующий: Природа или видимый физический мир будет раскрывать все секреты мира метафизического. Следовательно, в нашем измерении спирали — не просто математические концепции; они выполняют функции самих измерений. Сейчас, поскольку мы видим действие спиралей, распределенных Глобальной Магнитной Решеткой, и их влияние на формы континентов, можно рассмотреть, как каждое из Платоновых Тел “приспосабливается” к спиралям.
Таблица II. Гармонические соотношения Платоновых Тел.
Как написано в книге Роберта Лолора Сакральная Геометрия, Платоновы Тела пребывают в “простом гармоническом отношении” друг к другу. На вышеприведенной Таблице II видно, что простое отношение в спиралевидной форме выражается в терминах фи и квадратного корня из двух. Лолор приводит полный расклад индуистского “спектра” форм с гармоническими соотношениями для каждой формы. Вышеприведенные измерения — сравнения длины стороны всех Платоновых Тел. Поскольку каждая линия на любом Платоновом Теле будет одинаковой длины, эти измерения представляют собой универсальный стандарт для каждой формы.
Чтобы выявить соотношения, исследователь должен выбрать единицу измерения. Следует помнить простой факт: если у вас есть квадрат, и каждая его сторона равна единице, то диагонали будут равны 87302. Аналогично, если диаметр окружности равен единице, то длина окружности будет равна 960 или 3,14159. Чтобы сравнивать Платоновы Тела друг с другом, нам также понадобится присвоить единицу сторонам одной из форм. Чтобы просто и совершенно выполнить работу по получению базовых гармоник, следует присвоить единицу длине стороны куба. Как указано выше, все другие соотношения представляют собой точную числовую величину, которую мы получаем, сравнивая длины сторон всех остальных форм с длиной стороны куба.
Поскольку мы затронули отношение фи, интересно отметить: “солнечное число” 666 и “лунное число” 1080 также выражают отношение фи, будучи поделены друг на друга. Работа Джона Мичелла демонстрирует, что это отношение использовалось во многих древних священных объектах. Также мы видим его в природе на примере гармонического соотношения между такими вещами как размер планет. Поскольку отношение фи обладает значимой важностью, мы усматриваем еще одну причину, почему Индусы приписывали Пуруше или икосаэдру религиозное значение.
Теперь, когда у нас есть реальная математическая структура спиралевидной энергии, составляющей ЕС, нам больше не нужно интересоваться, являются ли ЕС на самом деле кристаллизованными частотами. Мы уже видели это на планетарном уровне, теперь видим и на математическом. Команда Хоагленда выявила связь между геометрическими формами и частотами измерений; и многих могло бы заинтересовать, как они это сделали. Ответ на этот вопрос еще больше помогает понять истинную физику, стоящую за гармоническими геометрическими формами.
На своем сайте Хоагленд опубликовал реферат по гиперпространственной физике, написанный еще в 1989 году. В нем представлена самая четкая картина, как команда Миссии Энтерпрайз связала воедино физику высших измерений и абстрактную концепцию Платоновой геометрии. Реферат можно найти здесь: www.lunaranomalies.com/Message.htm.
“Послание Сидонии”
Первое общение с внеземной цивилизацией?
Ричард К. Хоагленд и Эрол О. Торан.
[Мы собираемся привести только часть реферата, непосредственно относящуюся к теме.]
“… Если в “математике тетраэдра в Сидонии” мы действительно усматриваем намеренный процесс передачи информации о доказуемых астрофизических эффектах долгожданной “Единой Теории Поля”, уже одно это замечательно поддержало бы усилия, направленные на выявление основных связей между стихийными силами Природы. Ибо, вот самое дерзкое: единственный в своем роде ведущий математический подход к успешному моделированию таких связей, по существу, основывается на модели тетраэдра и последующем математическом расширении ее до “n-мерных соотношений более высоких измерений” (недавно открытых) между пятью Платоновыми Телами”. (Сираг, 1989)