Шаг за шагом. Усилители и радиоузлы
Шрифт:
В физике и технике обертоны называют гармоническими составляющими или, сокращенно, гармониками. Этим названием будем в дальнейшем пользоваться и мы. Учтите, что обертоны и гармоники нумеруются по-разному. Синусоидальный тон основной частоты (в нашем примере 440 гц) называют первой гармоникой, тон двойной частоты (880 гц), который у музыкантов числится первым обертоном, называется второй гармоникой, второй обертон (1320 гц) — третьей гармоникой и т. д. Проще говоря, в нумерацию обертонов не входит основной тон, а в нумерацию гармоник он входит. Чтобы подсчитать частоту той или иной гармоники, достаточно умножить частоту основного тона на ее порядковый номер. Легко подсчитать, что для нашего примера частота восьмой гармоники равна 3520 гц (440·8), десятой — 4400 гц (440·10) и т. д.
Теперь
Наряду с примой и октавой наш слух выделяет еще несколько благозвучных интервалов, так называемых консонансов. Прежде всего это чистая квинта (табл. 5), отчасти чистая кварта и в некоторой степени терция и секста. Остальные интервалы — это диссонансы, они звучат резко, даже неприятно, создают какие-то раздражающие призвуки (рис. 11).
Рис. 11. В зависимости от интервала между двумя звуками наш слух различает созвучия консонансы (благозвучные, приятные) и созвучия диссонансы (неприятные, раздражающие).
Первые исследователи музыкальной шкалы, а этой проблемой занимался еще Пифагор, ввели в нее консонирующие интервалы в чистом виде. Однако высота частотных ступенек при этом получалась неодинаковой, и в звучании музыки часто слышалась фальшь. Около 250 лет назад немецкий ученый и музыкант Лндреас Веркмейстер путем довольно сложных математических расчетов создал так называемую двенадцатиступенчатую, равномерно темперированную шкалу. На ней высота всех частотных ступенек одинакова (6 %), и в то же время имеются интервалы, очень близкие к консонирующим: к чистой квинте, терции, кварте и др. Этой шкалой пользуется и современная музыка, хотя время от времени предлагаются проекты более совершенной музыкальной шкалы: с большим числом ступенек в пределах октавы, большим приближением к естественным, продиктованным самой природой консонирующим интервалам. Пока эти проекты остаются только проектами. Но вряд ли стоит утверждать, что в будущем они не станут достоянием музыкального искусства.
В чем же состоит различие консонанса и диссонанса? Почему ухо по-разному реагирует на них? За счет чего одни созвучия мы относим к приятным, а другие едва в состоянии слушать? Впервые на эти вопросы попытался ответить Гельмгольц. Исследуя хорошо известное музыкантам явление — возникновение в самом ухе гармоник и комбинационных тонов, он построил довольно строгую теорию консонанса. Вот уже около ста лет ученые стремятся дополнить, развить, проверить или опровергнуть эту теорию и сами при этом открывают новые и интересные подробности анализа созвучий.
В качестве примера можно указать работы профессора С. Н. Ржевкина, который исследовал созвучия, подводя один чистый тон к правому уху, а второй — к левому. Оказалось, что в этом случае мы вообще не в состоянии заметить ни консонансов, ни диссонансов. Так еще раз было доказано, что истинное созвучие получается лишь тогда, когда оба звука попадают в одно ухо и там создают «гибридные» комбинационные тона.
Другую музыкальную проблему, привлекающую внимание физиков и физиологов, можно определить одним словом «ритмы». Марш, вальс, галоп, колыбельная. Даже эти простые примеры говорят о том, что ритмический рисунок — сложное чередование акцентов, пауз, звуков различной длительности — одно из главных выразительных средств музыки. Попутно хочется заметить, что не только в музыке, но в стихах, отчасти и в прозе, слух выделяет, а мозг оценивает созвучия (рифмы) и ритмы. Есть основание думать, что действие музыкальных и поэтических ритмов связано с ходом наших внутренних «биологических часов». Эти «часы» представляют собой сложные и пока еще во многом загадочные биологические и биохимические системы, которые отбивают такт работы отдельных клеток и целых органов — сердца, легких, мозга, определяют ритм жизни.
Наряду с изменением громкости и высоты звука, сложными ритмами, приятным и неприятным сочетанием тонов музыкальное искусство использует еще одно сильнейшее «оружие» — тембры. Мы уже знаем, что тембровая окраска определяется спектром звука — числом гармоник (обертонов) и их амплитудами. Ну, а сам спектр прежде всего зависит от того, каким способом создается звук, какой музыкальный инструмент является его источником [1] [3] .
Из всех музыкальных инструментов принято выделять три основные группы: струнные, духовые и ударные (рис. 12).
3
В квадратных скобках указан порядковый номер рекомендуемой книги или журнальной статьи по списку, приведенному в конце книги.
Рис. 12. Музыкальные инструменты.
В струнных инструментах, как говорит само название, источником звука является колеблющаяся струна. Можно думать, что далеким предком этих инструментов была туго натянутая поющая тетива лука. В зависимости от того, каким образом струна приводится в движение, среди струнных инструментов выделяют смычковые (скрипка, альт, виолончель, контрабас), щипковые (арфа, гитара, гусли, мандолина, балалайка) и клавишно-ударные (рояль).
Сама по себе струна создает очень слабый звук — уже на расстоянии 2–3 м он почти не слышен. Это связано с тем, что струна, даже самая толстая, имеет очень небольшую площадь поперечного сечения и увлекает за собой малый объем воздуха. Чтобы получить заметную звуковую мощность, во всех струнных инструментах, струну объединяют с большим излучателем. Струна приводит в движение излучатель, а он уже, захватывая большие массы воздуха, создает достаточно мощное излучение. У скрипки, гитары, контрабаса основной излучатель звука — это сам корпус инструмента, у рояля основным излучателем является особой формы доска — резонансная дека, над которой натянуты струны.
У каждого типа музыкальных инструментов имеется свой характерный тембр. Более того, даже инструменты одного и того же типа создают звук с различной тембровой окраской. Так, например, прослушав несколько, казалось бы, одинаковых скрипок, человек с хорошим слухом у каждой из них обнаружит какую-либо особенность звучания.
Как уже говорилось, струна создает большое число гармоник. Излучатель-корпус, резонируя на разных частотах, усиливает те или иные гармоники, подчеркивает их, окончательно формирует тембр. Те области частотного диапазона, где происходит усиление, подчеркивание гармоник, называют формантами. Можно сказать, что форманта — это область, где частотная характеристика излучателя звука имеет заметный подъем.