Шаг за шагом. Усилители и радиоузлы
Шрифт:
В предыдущей главе мы познакомились с однотактными усилителями, выходная мощность которых составляет 2–4 вт. Повысив анодное напряжение и допустив несколько большие нелинейные искажения, можно повысить выходную мощность этих усилителей до 5,5 вт, а применив в оконечном каскаде лампу 6ПЗС, — до 6,5 вт (табл. 16). При замене выходных ламп учтите, что лампы 6П1П, 6П6С и 6ПЗС имеют меньшую крутизну, чем 6П14П, и поэтому для них требуется в два-три раза большее напряжение сигнала. Применение этих ламп в описанных однотактных усилителях может потребовать некоторых изменений и в усилителе напряжения: наверняка придется значительно повысить усиление первого каскада усилителя, увеличив для этого в два-три раза сопротивление анодной нагрузки и в полтора-два раза гасящее сопротивление в цепи экранной сетки. В некоторых случаях при замене выходной лампы понадобится изменить число витков во вторичной обмотке выходного трансформатора с учетом новой величины оптимального сопротивления нагрузки (рис. 49).
В этой главе будет
Схема усилителя на 8 вт приведена на рис. 65, а на рис. 64 упрощенно показано его устройство и монтаж. Основные характеристики усилителя: коэффициент нелинейных искажений не более 1 %; чувствительность не хуже 250 мв; полоса воспроизводимых частот от 30 гц до 30 кгц; глубина регулировки тембра на частоте 30 гц от +20 до —20 дб, а на частоте 10 кгц от +12 до —16 дб; частотная характеристика усилителя для среднего и крайних положений регуляторов тембра приведена на рис. 66, б.
Рис. 64. Двухтактный усилитель — монтажная схема.
Схема усилителя, по-видимому, не требует подробных пояснений, так как все ее элементы и узлы нам уже знакомы. Так, в частности, выходной каскад собран по ультралинейной схеме (рис. 39, 4): часть переменного напряжения с первичной обмотки выходного трансформатора через небольшие сопротивления R28 и R29 подается на экранные сетки ламп Л3Л4. Совершенно очевидно, что этим же путем на экранные сетки поступает и постоянное напряжение. В катодные цепи выходных ламп включена цепочка автоматического смещения, а в цепи управляющих сеток — небольшие (по сравнению с сопротивлением утечки) антипаразитные сопротивления R25, R26. Они препятствуют паразитному самовозбуждению выходного каскада на высоких частотах.
Четырехкаскадный усилитель напряжения собран на двух двойных триодах. Значительный запас усиления позволяет включить в схему (между первым и вторым каскадами) эффективные раздельные регуляторы тембра, а также ввести несколько цепей отрицательной обратной связи. Обратной связью по току охвачены все каскады усилителя напряжения, так как ни одно из сопротивлений автоматического смещения не зашунтировано конденсатором. Три последних каскада, в том числе главный источник искажений — выходной каскад, охвачены глубокой обратной связью по напряжению. Обратная связь подается со вторичной обмотки Тр1 в катодную (сеточную) цепь правого триода Л1. В следующем каскаде есть цепочка обратной связи R14C7. Эта цепочка, так же как и сопротивления R26 R25, вводится для того, чтобы предотвратить самовозбуждение усилителя на сверхзвуковых частотах. Фазоинвертор выполнен по схеме с разделенными нагрузками (рис. 60, 1, а) на правом триоде Л2. Напряжение смещения на сетку этой лампы снимается с небольшой части катодной нагрузки (R20). Цепочки R22C13 и R5C12 — это обычные развязывающие фильтры, которые препятствуют возникновению паразитной обратной связи между каскадами через общие цепи питания.
Данные выходного трансформатора. Сечение сердечника 6,5 см2 (пластины Ш-22, толщина набора 30 мм). Первичная обмотка содержит 3000 витков провода ПЭ-0,15. В процессе ее намотки делают три отвода с таким расчетом, чтобы секции Iа и I г содержали по 900 витков, а секции Iб и Iв — по 600 витков. Обмотка II содержит 92 витка провода ПЭ-0,86, причем на секции IIа, IIб, и IIв приходится соответственно 24, 44 и 24 витка. Для того чтобы уменьшить индуктивность рассеивания и тем самым улучшить воспроизведение высших частот, первичная и вторичная обмотки разделены на части, которые при намотке трансформатора чередуются (рис. 64, б). Не забудьте, что вторичная обмотка заземлена, а на первичной действует большое (до 600 в) напряжение. Во избежание пробоя первичной обмотки, а значит, и всей «плюсовой» цепи нужно тщательно изолировать эту обмотку от вторичной, а также от сердечника трансформатора.
Акустический агрегат выбран с некоторым запасом мощности — 12 вт вместо 8 вт. Высокочастотные громкоговорители Гр3 и Гр4 подключены через разделительный конденсатор С14.
На рис. 65, 2, 3 показан другой вариант изготовления выходного трансформатора с весьма низкой индуктивностью рассеивания. Здесь вся первичная обмотка разделена на шесть секций, а вторичная на четыре секции. Секции чередуются таким образом, чтобы получилось наиболее сильное сцепление магнитных полей первичной и вторичной обмоток и чтобы трансформатор в то же время получился симметричным. Последнее условие улучшает общую симметрию двухтактного выходного каскада.
Каркас трансформатора разделен перегородкой на две равные части. Вначале наматывают все секции в одной из половин каркаса, а затем, перевернув его на 180°, наматывают вторую половину. Соединение секций выполнено в расчете на то, что левая и правая половины намотаны в разные стороны.
Рис. 65. Двухтактный усилитель — принципиальная схема.
Так же как и в предыдущем случае, необходима хорошая изоляция между секциями первичной и вторичной обмоток. Вторичная обмотка разбита на секции искусственно лишь для уменьшения индуктивности рассеивания. Данные секций: Iа', Iа", I г' и I г" — по 450 витков ПЭ-0,15; Iб и Iв — по 600 витков того же провода. Все четыре секции обмотки II одинаковые, и каждая из них содержит по 46 витков провода ПЭ-0,59. Сердечник с сечением 7,5 см2, пластины Ш-25, набор 30 мм. Сборка сердечника «встык», без зазора.
В усилителе можно применить и какой-либо готовый выходной трансформатор, например высокочастотный и низкочастотный трансформаторы от радиолы «Дружба». В этом случае, разумеется, нужно отказаться от ультралинейной схемы выходного каскада.
Усилитель, выполненный по схеме рис. 65, совершенно спокойно может отдать и большую мощность: до 12–15 вт. Для увеличения мощности в первую очередь нужно увеличить напряжение входного сигнала. Для этого проще всего ликвидировать некоторые цепи обратной связи, зашунтировав конденсаторами катодные сопротивления R3, R11 и R16. Если понадобится перейти в класс АВ, то необходимо увеличить на 30–50 % сопротивление автоматического смещения R27.
Кстати, вместо того чтобы увеличивать уровень входного сигнала на сетках выходных ламп, можно заменить сами лампы — включить вместо 6П1П лампы 6П14П. Обладая более высокой крутизной, они требуют меньшего напряжения сигнала, однако в виде «расплаты» создают несколько большие нелинейные искажения.
Если понадобится несколько уменьшить выходную мощность, то достаточно понизить анодное напряжение. При пониженном напряжении усилитель может развивать номинальную мощность, но с несколько большими искажениями. Так при Uв = 250 в можно получить те же 8 вт, но уже с Кн.и = 5 %. Здесь уместно заметить, что указываемая в числе параметров выходная мощность усилителя часто бывает умышленно занижена лишь для того, чтобы похвастаться малыми нелинейными искажениями. В действительности же усилитель может отдать на 30–50, а то и на все 100 % большую мощность, разумеется, при большем значении Кн.и (рис. 66).
Основа школьного радиоузла (РУ) небольшой мощности — это усилитель низкой частоты, очень похожий на уже знакомые нам усилители радиограммофонов и радиол. Отличительные особенности радиоузла — это его входные и выходные цепи (рис. 67, 68). Вход конструируется так, чтобы можно было вести через радиоузел несколько видов передач — подавать на усилитель сигналы с микрофона, звукоснимателя, магнитофона, радиоприемника или с линии радиотрансляционной сети. Что же касается выходных цепей, то они должны быть рассчитаны на подключение разных потребителей: абонентских громкоговорителей (радиоточек), а также мощных излучателей звука — звуковых колонок или рупорных громкоговорителей.