Шаг за шагом. Усилители и радиоузлы
Шрифт:
Один из способов уменьшения выходного сопротивления двухтактного усилительного каскада — это параллельное включение элементов нагрузки каждого плеча вместо обычного их последовательного включения (здесь речь идет о соединении элементов нагрузки для переменного тока). При обычном, то есть последовательном, включении элементов нагрузки каждого плеча R'н и R''н общее сопротивление Rн. общ, которое пересчитывается во вторичную обмотку выходного трансформатора и определяет демпфирующее действие выходного каскада, численно равно сумме R'н и R''н.
На рис. 71, 1, б упрощенно показана одна из схем параллельного включения R'н и R''н . Параллельное включение элементов нагрузки оказалось возможным благодаря тому, что лампы питаются не от общего источника анодного напряжения Uв, а от двух отдельных источников с одинаковыми напряжениями U'в и U''в.
Оправдано ли такое усложнение схемы?
При параллельном соединении общее сопротивление одинаковых элементов нагрузки равно половине любого из них. Таким образом, при параллельном соединении общее сопротивление R'н. общ уменьшается в четыре раза по сравнению с последовательной схемой, а это, в свою очередь, резко улучшает демпфирование громкоговорителя.
Совершенно очевидной для двухтактной параллельной схемы является еще одна особенность: общее оптимальное сопротивление нагрузки, — то есть то сопротивление, которое громкоговорители с помощью выходного трансформатора должны внести в цепь его первичной обмотки, — также уменьшается в четыре раза. Так, например, если оптимальное сопротивление для одной лампы 6П18П составляет 3 ком, то при обычной двухтактной схеме в анодные цепи нужно включить 6 ком, а при двухтактной параллельной схеме — 1,5 ком. Для некоторых ламп в некоторых режимах оптимальное сопротивление нагрузки составляет всего несколько сот ом. Подобные величины позволяют обойтись вообще без выходного трансформатора.
Для бестрансформаторных выходных каскадов были разработаны высокоомные электродинамические громкоговорители. Звуковую катушку высокоомного громкоговорителя наматывают в несколько слоев очень тонким проводом — его диаметр обычно составляет 0,05 мм. Включив последовательно два-три высокоомных громкоговорителя, как раз и получают необходимое сопротивление нагрузки без всякого выходного трансформатора. При этом, естественно, резко улучшаются качественные показатели усилителя, так как выходной трансформатор всегда является источником значительных частотных и нелинейных искажений. Кроме того, выходной трансформатор создает дополнительные сдвиги фаз и таким образом ограничивает предельно допустимую глубину обратной связи (рис. 43).
На рис. 71, 1, в показана упрощенная схема подключения нагрузки к двухтактному параллельному выходному каскаду через разделительный конденсатор Ср. Применение Ср позволило отделить нагрузку от постоянных составляющих анодного тока и заменить два анодных выпрямителя одним, но с удвоенным напряжением. Лампы фактически представляют собой делитель, на котором действуют равные части (половина) постоянного напряжения Uв. общ.
На рис. 71, 1, г приводится одна из возможных практических схем усилителя без выходного трансформатора. В усилителе работают
Рис. 71. Некоторые схемы, улучшающие качество звучания.
Высокоомных громкоговорителей пока нет в широкой продаже, а выходные каскады без выходного трансформатора еще не встречаются в массовой аппаратуре: приемниках, усилителях, радиолах. В то же время радиолюбители находят применение этим усилителям, подключая к ним обычные низкоомные громкоговорители с выходными трансформаторами.
Выходной трансформатор, разумеется, не позволяет воспользоваться всеми преимуществами двухтактной параллельной схемы, но некоторые ее достоинства проявляются весьма четко. Так, в частности, резко, в несколько раз уменьшается выходное сопротивление усилителя и улучшается демпфирование. Ввиду уменьшения сопротивления нагрузки оказывается возможным упростить конструкцию выходного трансформатора — уменьшить индуктивность первичной обмотки L1 (рис. 49).
На рис. 71, 2 показана одна из возможных практических схем двухтактного параллельного усилителя с выходным трансформатором, где в последнем каскаде работает мощный двойной триод 6Н5С [15]. Выходная мощность усилителя составляет 2,5 вт при нелинейных искажениях 1 % и 4 вт при нелинейных искажениях 5 %; уровень фона 42 дб; чувствительность около 250 мв; частотная характеристика лежит в пределах 40 гц— 12 кгц при неравномерности на краях не более 2 дб.
Выходной каскад усилителя работает в классе AB1. Анодные напряжения на триодах лампы 6Н5С необходимо выравнять с точностью до 3 в путем тщательного подбора сопротивления R13. Оно рассчитано на мощность 8—10 вт и может быть собрано из четырех двухваттных сопротивлений по 200 ом, соединенных последовательно, или по 3,2 ком, соединенных параллельно. Оптимальное сопротивление нагрузки выходного каскада — около 200 ом. Именно на эту величину и рассчитывают выходной трансформатор Тр1.
Предоконечный каскад — это фазоинвертор, выполненный на правом (по схеме) триоде лампы Л2 (6Н9С). Особенность каскада — бесконденсаторная связь с сетками выходных ламп, благодаря которой улучшается частотная характеристика. Режимы всех ламп подобраны с таким расчетом, чтобы постоянные напряжения на аноде и катоде фазоинвертора в точности соответствовали напряжениям на сетках Л3. Именно поэтому и не нужны разделительные конденсаторы: между анодом и катодом, с одной стороны, и сетками — с другой, нет постоянного напряжения, от которого нужно было бы «защищать». Пусть вас не смущает то, что на управляющих сетках Лз должен быть «плюс» — положительным напряжение на сетках можно считать только относительно корпуса. В то же время на каждой сетке действует «минус» — постоянное отрицательное смещение 36 в относительно соответствующего катода (180 в — 144 в = 36 в и 72 в — 36 в = 36 в).