Шаги за горизонт
Шрифт:
Я развернул перед вами этот анализ исторического развития физики, поскольку меня беспокоит то обстоятельство, что модное ныне слово «революция» может в самых разных отношениях сбивать с толку, и изучение истории новейшей физики могло бы оказаться весьма полезным, чтобы этого избежать. Впрочем, как я уже говорил, я предоставляю вам размышлять о том, сколь далеко может заходить сопоставление революции в науке и революции в обществе. Подобная аналогия может быть правильной всегда лишь наполовину, но она и намечена здесь, конечно же, только для того, чтобы побудить к размышлениям.
Конец физики? [77]
В центре внимания физиков в наши дни стоит физика элементарных частиц. В этой связи возникает иногда вопрос, не закончится ли физика вообще, как только будут решены поставленные здесь проблемы. Ведь вся материя и все излучение состоят из элементарных частиц, так что, казалось бы, можно сделать вывод, будто полное знание законов, определяющих их свойства и поведение, нечто вроде «мировой формулы»,
77
69 Статья в газете «S"uddeutschen Zeitung» от 6 октября 1970 г.
Принятию этого тезиса о возможном завершении физики препятствует опыт прошлого, когда тоже думали, что физика вот-вот кончится, — и ошибались при этом. Макс Планк рассказывал, что его учитель Джолли отсоветовал ему изучать физику, так как она-де в основном завершена и тому, кто хочет заниматься научно-исследовательской деятельностью всерьез, едва ли стоит тратить на нее свои силы. Ныне никто уже не пытается выступать с такими ложными прогнозами, и вопрос поэтому следует поставить так: а существовали ли в истории физики вообще хотя бы частные подразделы, достигшие окончательной формулировки своих законов и внушающие поэтому уверенность в том, что и через тысячи или миллионы лет, на любой сколь угодно отдаленной от нас солнечной системе ход явлений будет подчиняться этим законам в той же самой математической формулировке?
Вне всякого сомнения, такие замкнутые разделы существуют. Вот один вполне конкретный пример: закон рычага был сформулирован Архимедом около двух тысяч лет назад, но можно не сомневаться, что он будет справедлив всегда и повсюду. То же самое можно, по-видимому, утверждать и о ньютоновской механике в целом.
Путешественники на Луну без колебаний полагаются на ее принципы и действуют в соответствии с ними. А если им понадобится воспользоваться рычагом, они, само собой разумеется, будут считать правильным старый закон Архимеда и успешно применять его. Впрочем, уже здесь можно было бы выдвинуть следующее возражение: разве теория относительности и квантовая механика не представляют собой улучшенную по сравнению с ньютоновской механику? И там, где необходима высокая степень точности, разве путешественник на Луну не должен обратиться к этому улучшенному варианту? А если так, не доказывает ли это, что, по существу, и механика еще вовсе не закончена?
Чтобы найти ответ на эти вопросы, необходимо прежде всего констатировать следующее: когда формулируются великие всеобъемлющие законы природы — а это стало впервые возможным в ньютоновской механике, — речь идет об идеализации действительности, а не о ней самой. Идеализация возникает оттого, что мы исследуем действительность с помощью понятий, оправдавших себя при описании явлений и придающих этим последним определенный облик. В механике это, например, такие понятия, как место, время, скорость, масса, сила. Тем самым, однако, мы ограничиваем — или, если угодно, стилизуем — картину реальности, поскольку отвлекаемся от всех особенностей, которые уже нельзя уловить в этих понятиях. Если помнить об этих ограничениях, можно утверждать, что в ньютоновской теории механика завершена, иными словами, механические явления строго подчиняются законам ньютоновской физики — в той мере, в какой они вообще поддаются описанию в понятиях этой физики. Мы убеждены, как уже говорили, в том, что утверждения этой физики будут верны и через миллионы лет, и на отдаленнейших солнечных системах, и полагаем, что в рамках своих понятий ньютоновская физика не может быть улучшена. Но мы никоим образом не вправе утверждать, что в этих понятиях могут быть описаны все явления.
Можно, стало быть, — с упомянутыми оговорками — сказать, что ньютоновская механика представляет собой замкнутую теорию. Для такой замкнутой теории характерна система определений и аксиом, фиксирующая основополагающие понятия и их связи. Кроме того, должна существовать большая сфера опыта, наблюдаемых явлений, которая может быть в этой системе описана с высокой степенью точности. Теория соответственно представляет собой справедливую для всех времен идеализацию этой сферы опыта.
Но существуют и другие сферы опыта, а тем самым и другие замкнутые теории. В XIX веке особо замкнутую — в указанном смысле — форму получила термодинамика как статистическое описание системы с очень большим числом степеней свободы. Аксиомы, лежащие в основе этой теории, определяют и связывают такие понятия, как температура, энтропия, энергия, причем первые два понятия вообще не встречаются в ньютоновской механике, а последнее играет важную роль в любой области опыта, не только в механике. В работах Гиббса статистическая термодинамика приобрела вполне замкнутый вид, и мы не можем сомневаться в том, что ее законы будут иметь силу повсюду и в любое время — но, разумеется, только для тех явлений, которые можно описать с помощью понятий температуры, энтропии, энергии. Эта теория тоже является идеализацией, и мы знаем, что имеется масса состояний, например, газообразного вещества, где нельзя говорить о температуре и где, стало быть, законы термодинамики неприменимы.
Из сказанного ясно, что в физике существуют замкнутые теории, которые можно считать идеализациями ограниченной сферы опыта и которые претендуют на вечную значимость. Очевидно, однако, что о конце физики в целом говорить тут пока еще нельзя.
За последние 200 лет были экспериментально разработаны совершенно новые сферы опыта. Со времен фундаментальных трудов Гальвани и Вольта с возрастающей точностью изучаются электромагнитные явления. Фарадей выявил связь этих явлений с химией, а Герц — с оптикой. Факты, послужившие основой для развития атомной физики, были сначала открыты в химических опытах, а затем детальнейше изучены в экспериментах с электролизом, разрядом в газах, а позднее с радиоактивностью. Замкнутых теорий прошлого не хватало для понимания этого колоссального нового материка. Поэтому возникли новые, более емкие теории, которые можно считать идеализациями этой новой области. Из электродинамики движущихся тел возникла теория относительности, приведшая к появлению новых воззрений на пространство и время. Квантовая теория говорит о механических процессах внутри атома. При этом в качестве предельного случая — когда можно полностью объективировать событие, то есть отвлечься от взаимодействия между наблюдателем и исследуемым объектом, — она включает в себя также и ньютоновскую механику.
И теорию относительности, и квантовую механику можно считать замкнутыми теориями. Они представляют собой очень общие идеализации весьма широкой сферы опыта, и можно считать, что их законы будут справедливы в любом месте и в любое время — но только относительно той сферы опыта, в которой применимы понятия этих теорий.
Наконец, за последние десятилетия в исследованиях космических лучей, а главное в экспериментах на крупных ускорителях (например, в Беркли, Женеве, Брукхейвене, Серпухове) были заложены основы физики элементарных частиц. При этом выявились такие особенности, которые позволили пролить новый свет на древнюю проблему мельчайших частиц материи. До сих пор развитие физики неизменно показывало, что каждый раз, когда какие-нибудь формы признавались в качестве мельчайших материальных частей, их можно было разделить на еще более мелкие формы, применяя более мощные силы. Атомы химиков нельзя разложить химическими средствами. Однако в электроразрядных трубках, то есть под действием более мощных электрических сил, атомное ядро можно отделить от окружающих электронов. Сталкиваясь с другими ядрами достаточно высоких энергий, это атомное ядро подвергается дальнейшему делению. Выяснилось, что все атомные ядра состоят из двух основных составных частей, из протонов (ядер атома водорода) и нейтронов. Их, как и электроны, назвали элементарными частицами. Естественно было предположить, что, применяя еще большие силы, например бомбардируя ими друг друга с чрезвычайно высокой энергией, можно будет расщепить также и протоны и нейтроны. Подобного рода исследования и были проведены на больших ускорителях. Оказалось, однако, что при таких соударениях происходит нечто иное. Высокая кинетическая энергия сталкивающихся друг с другом элементарных частиц превращается в материю, иными словами, при соударении возникают новые элементарные частицы, которые, однако, вовсе не обязательно меньше самих соударяющихся частиц. В таком случае говорить о «делении», по сути дела, уже нельзя. Итак, экспериментируя с элементарными частицами при таких больших ускорениях, мы подошли к пределу, за которым понятие деления — для известных на сегодняшний день элементарных частиц — утрачивает смысл, и мы с чистой совестью можем допустить, что эти элементарные частицы в самом деле являются мельчайшими частями материи, если только можно вообще придать какой-нибудь смысл данному понятию.
Эту новую опытную область, физику элементарных частиц, не удалось описать с помощью имеющихся замкнутых теорий — квантовой механики и теории относительности, — хотя уже в них речь идет о весьма далеко идущих идеализациях. Но подобно старой ньютоновской механике, квантовая механика все еще предполагает существование неизменных точечных масс; молчит она и о превращении энергии в материю. Напротив, теория относительности пренебрегает теми особенностями природы, которые связаны с планковским квантом действия; она, стало быть, еще допускает объективацию явлений в смысле классической физики. Итак, для физики элементарных частиц надо было искать еще более глубокую идеализацию, которая охватывала бы в качестве предельных случаев и квантовую механику, и теорию относительности. Подобно тому как квантовая механика смогла объяснить, например, сложный оптический спектр атома железа, новая теория должна объяснить сложный спектр элементарных частиц. Подобная идеализация, можно не сомневаться, получит однажды адекватное математическое представление, но только дальнейшие экспериментальные и теоретические исследования могут показать, достаточны ли для такого представления предложенные до сих пор математические структуры. Однако независимо от этой проблемы, которой нам незачем здесь заниматься, можно спросить: ну, а в том случае, если такую идеализацию удастся разработать, будет ли физика завершена? Поскольку все физические объекты состоят из элементарных частиц, можно было бы заключить, что полное знание законов, определяющих поведение элементарных частиц, эквивалентно полному знанию законов поведения всех физических объектов, а поэтому мы можем говорить здесь о конце физики.
Подобное умозаключение, однако, едва ли правомерно, поскольку оно упускает из виду одно важное обстоятельство. Дело в том, что и замкнутую теорию элементарных частиц — назовем ли мы ее «мировой формулой» или нет — следует понимать как идеализацию. Хотя она строго отображает неслыханно широкую область явлений, вполне могут существовать и другие явления, которые эта идеализация охватить неспособна. Наиболее разительным примером, доказывающим такую возможность, служит биология. Все биологические объекты тоже состоят из элементарных частиц, тем не менее понятия, в которых обычно описываются биологические процессы, например понятие самой жизни, не встречаются в этой идеализации. Так что физике еще предстоит развиваться в этом направлении.