Шины PCI, USB и FireWire
Шрифт:
• завершается обработка прерывания инструкцией IRET, по которой процессор возвращается к выполнению прерванного потока инструкций, предварительно извлекая из стека содержимое регистра флагов. При этом аппаратные прерывания снова окажутся разрешенными.
Эта последовательность описана применительно к обычному контроллеру прерываний (PIC), в системах с APIC меняется способ доставки вектора прерывания от контроллера к процессору, а в прерываниях MSI меняется способ доставки сигнала от устройства к контроллеру APIC. Эти нюансы описаны в последующих разделах.
Традиционный контроллер прерываний – PIC
Контроллер прерываний (PIC) 8259A является периферийным
• управление режимами работы контроллера;
• управление приоритетами и масками запросов;
• идентификацию запросов прерывания без вырабатывания общего запроса – обслуживание прерываний по опросу (полинг).
В контроллере имеется три регистра: IRR, IMR и ISR. С каждым входом запроса в контроллере связано по одному биту каждого из этих регистров; бит 0 каждого из этих регистров относится к входу 0, бит 1 – к входу 1, бит 7 – ко входу 7. Регистры имеют следующие назначения:
• IRR (Interrupt Request Register) – регистр запросов прерываний, в котором бит устанавливается при обнаружении сигнала прерывания на соответствующем входе, независимо от маски;
• IMR (Interrupt Mask Register) – регистр масок прерываний. Единичное значение бита означает замаскированность данного входа – по запросу с замаскированного входа общий запрос прерывания не генерируется;
• ISR (Interrupt Service Register) – регистр обслуживаемого прерывания. Во время цикла подтверждения (INTA) в регистре устанавливается бит, соответствующий наиболее приоритетному запросу и, соответственно, формируемому вектору прерывания. В этот же момент обнуляется соответствующий бит запроса в регистре IRR. Бит в ISR обнуляется по получении контроллером команды EOI, а в режиме автоматического подтверждения (по команде AEOI) он обнуляется сразу после передачи вектора прерывания.
Контроллер прерываний позволяет программировать свои входы на чувствительность к уровню или перепаду сигнала:
• чувствительность к уровню (level sensitive) означает, что контроллер прерываний вырабатывает запрос прерывания процессора по факту обнаружения определенного уровня на входе IRQx. Если к моменту завершения обработки этого запроса (после записи команды EOI в регистр контроллера прерываний) контроллер снова обнаруживает активный уровень на том же входе DRQx, то он снова сформирует запрос на прерывание процессора;
• чувствительность к перепаду (edge sensitive) означает, что контроллер прерываний вырабатывает запрос прерывания процессора только по факту обнаружения перепада (на ISA – положительного) на входе IRQx. Повторно запрос по этому входу возможен только по следующему такому же перепаду, то есть сигнал предварительно должен вернуться в исходное состояние.
В любом случае сигнал запроса аппаратного прерывания IRQx должен удерживаться
Стандартный PIC позволяет управлять чувствительностью только для всех входов одновременно. В шине ISA и системной периферии (таймеры, контроллер клавиатуры) прерывание сигнализируется положительным перепадом сигнала на линии запроса, так что традиционно контроллеры PIC программируют на чувствительность к перепаду. Более поздние модификации PIC, применяемые в системах с шиной EISA и ISA с поддержкой PnP, а также новые контроллеры APIC при работе в PIC-совместимом режиме позволяют управлять чувствительностью для каждого входа индивидуально.
Один PIC 8259A позволяет обслуживать 8 запросов прерываний; в PC/AT применяется каскадное соединение двух контроллеров, один из которых является ведущим, другой – ведомым. Ведущий контроллер 8259A#1 обслуживает запросы 0, 1, 3–7; его выход подключается к входу запроса прерываний процессора. К его входу 2 подключен ведомый контроллер 8259A#2, который обслуживает запросы 8–15. При этом поддерживается вложенность приоритетов – запросы 8–15 со своим рядом убывающих приоритетов вклиниваются между запросами 1 и 3 ведущего контроллера, приоритеты запросов которого также убывают с ростом номера. В XT каскадирование не применялось и один контроллер 8259A обслуживал все 8 линий запросов.
Контроллер 8259A позволяет работать с запросами в различных режимах:
• Fully Nested Mode – режим полной вложенности приоритетов; каждому входу (уровню) запросов назначается свой приоритет (самый приоритетный – вход 0). В момент подтверждения прерывания контроллер устанавливает в регистре ISR бит, соответствующий самому приоритетному запросу на данный момент (и переданному вектору прерывания), и до его сброса игнорирует последующие запросы с данного входа и менее приоритетные запросы;
• Special Fully Nested Mode – специальный режим полной вложенности, используемый в ведущем контроллере при каскадном соединении. В этом режиме ведущий контроллер не блокирует запрос от входа, к которому подключен ведомый контроллер. Это позволяет ведомому контроллеру сигнализировать о запросе, более приоритетном, чем предыдущий. В конце процедуры обработки ведомому контроллеру посылается неспецифический EOI, после чего считывается его ISR. Если в ISR ни один бит не установлен, то неспецифический EOI посылается и ведущему контроллеру, что позволит ему обслуживать и менее приоритетные входы. Если же в ISR ведомого контроллера есть ненулевые биты, то ведущий контроллер снова подаст общий запрос прерывания, и на его подтверждение ведомый пошлет соответствующий вектор. Упоминаний о проверке на 0 значения ISR вторичного контроллера до подачи EOI первичному применительно к PC автору не встречалось. Очевидно, что в ней нет необходимости, если не используется ротация приоритетов: если у вторичного контроллера есть еще не обслуженные запросы, то они будут обслужены в соответствии со своим приоритетом (до IRQ3…IRQ7);