Шины PCI, USB и FireWire
Шрифт:
На базе шины PCI 2.0 фирмой Intel был разработан выделенный интерфейс для подключения графического акселератора AGP (см. главу 7).
Спецификации PCI публикуются и поддерживаются организацией PCI SIG (Special Interest Group,. Шина PCI существует в разных конструктивных исполнениях: Mini-PCI, Small PCI, Card Bus, Compact PCI (CPCI), PXI.
ГЛАВА 2Протокол, команды и транзакции шин PCI и PCI–X
Обмен информацией по шине PCI и PCI–X организован в виде транзакций – логически завершенных операций обмена. В типовой транзакции участвуют два устройства – инициатор обмена (initiator), он же ведущее устройство (master), и целевое устройство (ЦУ, target)), оно же ведомое (slave). Правила взаимодействия этих устройств определяются протоколом шины PCI. Устройство может следить за транзакциями на шине и не являясь их участником (не вводя никаких сигналов); режиму слежения соответствует
Сигнальный протокол шин PCI и PCI–X
Состав и назначение интерфейсных сигналов шины раскрывает табл. 2.1. Состояния всех сигнальных линий воспринимаются по положительному перепаду CLK, и именно эти моменты в дальнейшем описании подразумеваются под тактами шины (на рисунках отмечены вертикальными пунктирными линиями). В разные моменты времени одними и теми же сигнальными линиями управляют разные устройства шины, и для корректной (бесконфликтной) «передачи полномочий» требуется, чтобы существовал промежуток времени, в течение которого линией не управляет ни одно устройство. На временных диаграммах это событие – так называемый «пируэт» (turnaround) – обозначается парой полукруглых стрелок.
В каждый момент времени шиной может управлять только одно ведущее устройство, получившее на это право от арбитра. Каждое ведущее устройство имеет пару сигналов – REQ# для запроса на управление шиной и GNT# для подтверждения предоставления управления шиной. Устройство может начинать транзакцию (устанавливать сигнал FRAME#) только при полученном активном сигнале GNT# и дождавшись отсутствия активности шины. Заметим, что за время ожидания покоя арбитр может «передумать» и отдать управление шиной другому устройству с более высоким приоритетом. Снятие сигнала GNT# не позволяет устройству начать следующую транзакцию, а при определенных условиях (см. далее) может заставить прекратить начатую транзакцию. Арбитражем запросов на использование шины занимается специальный узел – арбитр, входящий в мост, соединяющий данную шину с центром. Схема приоритетов (фиксированный, циклический, комбинированный) определяется программированием арбитра.
Для адреса и данных используются общие мультиплексированные линии AD. Четыре мультиплексированные линии C/BE[3:0] обеспечивают кодирование команд в фазе адреса и разрешение байтов в фазе данных. В транзакциях записи линии C/BE[3:0] разрешают использование байтов данных одновременно с их присутствием на шине AD, в транзакциях чтения эти сигналы относятся к байтам следующей за ними фазы данных. В фазе адреса (начало транзакции) ведущее устройство активирует сигнал FRAME#, передает целевой адрес по шине AD, а по линиям C/BE# – информацию о типе транзакции (команду). Адресованное целевое устройство отзывается сигналом DEVSEL#. Ведущее устройство указывает на свою готовность к обмену данными сигналом IRDY#, эта готовность может быть выставлена и до получения DEVSEL#. Когда и целевое устройство будет готово к обмену данными, оно установит сигнал TRDY#. Данные по шине AD передаются только при одновременном наличии сигналов IRDY# и TRDY#. С помощью этих сигналов ведущее и целевое устройства согласовывают свои скорости, вводя такты ожидания (wait states). На рис. 2.1 приведена временная диаграмма обмена, в которой и ведущее и целевое устройства вводят такты ожидания. Если бы они оба ввели сигналы готовности в конце фазы адреса и не снимали бы их до конца обмена, то в каждом такте после фазы адреса передавались бы по 32 бита данных, что обеспечило бы выход на предельную производительность обмена. В транзакциях чтения после фазы адреса необходим дополнительный такт для пируэта, во время которого инициатор прекращает управление линией AD; целевое устройство сможет взять на себя управление шиной AD только в следующем такте. В транзакции записи пируэт не нужен, поскольку данные передает инициатор.
На шине PCI все транзакции трактуются как пакетные:
Инициатор может начать следующую транзакцию и без такта покоя, установив FRAME# одновременно со снятием IRDY#. Такие быстрые смежные транзакции (Fast Back-to-Back) могут быть обращены как к одному, так и к разным целевым устройствам. Первый тип быстрых смежных транзакций поддерживается всеми устройствами PCI, выступающими в роли целевого устройства. На поддержку второ го типа смежных транзакций (такая поддержка необязательна) указывает бит 7 регистра состояния (см. главу 5). Инициатору разрешают (если он умеет) использовать быстрые смежные транзакции с различными устройствами (разрешение определяется битом 9 регистра команд), только если все агенты шины допускают быстрые обращения. При обмене данных в режиме PCI–X быстрые смежные транзакции недопустимы.
Протокол шины обеспечивает надежность обмена – ведущее устройство всегда получает информацию об отработке транзакции целевым устройством. Средством повышения достоверности обмена является применение контроля четности: линии AD[31:0] и C/BE[3:0]# и в фазе адреса, и в фазе данных защищены битом четности PAR (количество установленных битов этих линий, включая PAR, должно быть четным). Действительное значение PAR появляется на шине с задержкой в один такт относительно линий AD и C/BE#. При обнаружении ошибки устройство вырабатывает сигнал PERR# (со сдвигом на такт после появления на шине действительного бита четности). В подсчете четности при передаче данных учитываются все байты, включая и недействительные (отмеченные высоким уровнем сигнала C/BEx#). Состояние бит, даже и в недействительных байтах данных, во время фазы данных должно оставаться стабильным.
Каждая транзакция на шине должна быть завершена планово или прекращена, при этом шина должна перейти в состояние покоя (сигналы FRAME# и IRDY# пассивны). Завершение транзакции выполняется либо по инициативе ведущего устройства, либо по инициативе целевого устройства.
Ведущее устройство может завершить транзакцию одним из следующих способов:
• comletion – нормальное завершение по окончании обмена данными;
• time-out – завершение по тайм-ауту. Происходит, когда во время транзакции у ведущего устройства отбирают право на управление шиной (снятием сигнала GNT#), и истекает время, указанное в его таймере Latency Timer. Это может произойти, если адресованное целевое устройство оказалось непредвиденно медленным или запланирована слишком длинная транзакция. Короткие транзакции (с одной-двумя фазами данных) даже в случае снятия сигнала GNT# и срабатывания таймера завершаются нормально;
• master-Abort – прекращение транзакции, когда в течение заданного времени ведущее устройство не получает ответа от целевого устройства (сигнала DEVSEL#).
Транзакция может быть прекращена по инициативе целевого устройства; для этого оно может ввести сигнал STOP#. Возможны три типа прекращения транзакции:
• retry – повтор, введение сигнала STOP# при пассивном сигнале TRDY# до первой фазы данных. Эта ситуация возникает, когда целевое устройство из-за внутренней занятости не успевает выдать первые данные в положенный срок (16 тактов). Прекращение типа retry является указанием ведущему устройству на необходимость повторного запуска той же транзакции;
• disconnect – отключение, введение сигнала STOP# в течение или после первой фазы данных. Если сигнал STOP# введен при активном сигнале TRDY# очередной фазы данных, то эти данные передаются, на чем транзакция и завершается. Если сигнал STOP# выставлен при пассивном сигнале TRDY#, то транзакция завершается без передачи данных очередной фазы. Отключение производится, когда целевое устройство не способно своевременно выдать или принять очередную порцию данных пакета. Отключение является указанием ведущему устройству на необходимость повторного запуска этой транзакции, но с модифицированным стартовым адресом;