Синергетика. Основы методологии
Шрифт:
Структурно-волновой резонанс может явиться одним из главных механизмов возникновения и стабилизации новых структур от наномасштабов до масштабов Вселенной — то есть одной из причин структуре — и системоформирования, особенно у биологических объектов и в социальных системах.
Поэтому условия его возникновения и особенности этого типа процессов имеют особое значение при качественном анализе взаимодействия исследуемой системы и поля.
Поиск аномальных состояний динамических систем, в частности, транспортно-информационных, которые могут быть вызваны явлением структурно-волнового резонансного взаимодействия или аналогичных ему, должен войти
Глава 5. Бифуркационные процессы
Хаотичность, возникающая в динамических моделях реальных систем, теоретическое обнаружение и исследование странных аттракторов, а также анализ бифуркаций, происходящих в детерминированных динамических системах в связи с изменениями управляющих параметров свидетельствуют о том, что даже в случае использования детерминированных математических моделей иногда проявляется основное свойство природных процессов — их принципиальная неполная предсказуемость, У детерминированных моделей — динамических систем это свойство проявляется в случае потери устойчивости их стационарных состояний или других аттракторов или при возникновении странных аттракторов. Для сложных систем принципиальное отсутствие возможности точного предсказания будущего поведения самой системы (обобщённой волны) и её элементов (квантов) становится их основной особенностью. Это свойство определяется тем, что подобные системы, взаимодействуя с окружающим полем, принимают участие в «бифуркационных событиях», исход которых не может быть заранее предсказан и которые становятся для них скорее правилом, чем исключением.
Мир состоит из взаимодействующих между собой волн, структур и систем, которые с той или иной степенью достоверности могут быть выделены из окружающей среды. Всю мировую историю можно представить себе как эволюцию взаимодействующих структур и систем.
Простейшей математической моделью эволюции систем является граф, названный нами графом структур и событий, одной из координат которого является время.
Определенному критическому моменту эволюции соответствует узел эволюционного графа с малыми отрезками прилегающих к нему ребер.
Назовём этот критический момент и соответствующий ему узел графа событием.
Не всегда повторение казалось бы одинаковых опытов приводит к однозначному результату. События, результаты которых не могут быть однозначно предсказаны, будем называть бифуркационными событиями.
Для бифуркационного события мы в лучшем случае можем на основании предыдущего опыта определить множество возможных исходов и вероятность реализации каждого из них. Это множество может быть как непрерывным, так и дискретным, как одномерным, так и многомерным. В этом случае граф структур и событий приобретает новую обобщённую координату — бифуркационную.
Здесь уместно ввести аналогию с дорогой, по которой едут автомобили. Дорога может быть одна, дорог может быть много, дороги могут разделяться и сливаться, они образуют некоторый граф или сеть возможных (разрешённых) путей. Каждая развилка дороги — это условие реализации бифуркационного события, в результате которого может быть выбран тот или иной путь следования, возможно, с некоторой вероятностью. Изучаемая нами система взаимодействующих структур — это автомобиль, который едет по дороге, и на каждой развилке (бифуркация — двойная вилка) выбирает тот или иной путь. Каждый индивидуальный автомобиль проезжает только один путь. Проблема взаимодействия индивидуальных автомобилей и сети разрешенных для них дорог есть аналог основной проблемы, связанной с построением бифуркационной проекции графа структур и событий.
Каждому бифуркационному событию соответствует не один, а несколько или бесконечное множество результатов, которые могут реализоваться после свершения события. Эти результаты образуют множество возможных результатов данного события. Если событие произошло, то из всего множества возможных результатов реализуется один, и дальнейшее развитие процесса происходит лишь по одному из возможных сценариев до тех пор, пока не произойдет новое событие с несколькими возможными исходами.
Таким образом, формируется новая размерность — бифуркационная размерность. При этом каждый вариант результатов взаимодействия может иметь свое количество результирующих структур.
С другой стороны, если взаимодействующие структуры рассматривать как единую динамическую систему, то бифуркационное событие — это такая качественная трансформация параметров системы, которая может вывести на несколько различных аттракторов (зон притяжения).
Перевязка аттракторной и вероятностной интерпретаций исходов бифуркационного события дала путеводную нить к выяснению механизмов многозначности результатов почти идентичных событий.
Будущее может быть известно лишь с какой-то вероятностью. Изучение законов природы позволяет лишь снизить до минимума неопределенность в этом знании (уменьшить число допустимых дорог, по которым должна двигаться автомашина).
Однако, будущее может через некоторое время стать настоящим и, если считать, что о настоящем известно все, то принципиально всегда можно уменьшить неизвестность будущего до нуля, сделав его настоящим, после чего оно становится прошлым, и вновь неизвестным, но по-другому.
В графе структур и событий могут быть выделены определенные области (ветви), начинающиеся с какого-либо события и кончающиеся каким-либо событием, которые обладают некоторой независимостью от остальных областей графа. Такие ветви были названы нами процессами.
Исследование процессов, аналогичных данному, то есть тому, в котором участвует исследуемая нами система, позволяет в случае бифуркционных процессов, определить несколько возможных траекторий движения и, зная частоту встречи той или иной траектории, приближенно определить вероятность реализации каждой из них.
Это можно сделать лишь в том случае, если нам удастся включить исследуемую систему в качестве кванта в какое-либо семейство систем — обобщённую волну — и исследовать эмпирически динамику поведения значительного количества аналогичных систем (квантов).
Каждому варианту возможной фазовой траектории изучаемой динамической системы как модели реального объекта можно сопоставить некоторое число, характеризующее относительную частоту встречи этого варианта в процессе эксперимента, называемое вероятностью реализации.
Выбор этих чисел производится таким образом, чтобы их сумма по всем вариантам равнялась единице.
Любое бифуркационное событие при его анализе за счёт факторизации вероятностного пространства или идентификации его исходов может быть на первом этапе рассмотрения сведено к бифуркационному событию с двумя возможными исходами.