Системное программирование в среде Windows
Шрифт:
6.6. Можете ли вы предложить способ, возможно, связанный с использованием объектов задач, для определения времени, затраченного на выполнение операций в пользовательском режиме и в режиме ядра? Использование объектов задач может потребовать внесения изменений в программу grepMP.
6.7. Улучшите функцию grepMP (программа 6.5) таким образом, чтобы она сообщала код завершения для каждой завершенной задачи. Кроме того, организуйте вывод временных характеристик (истекшего времени, времени работы в режиме ядра и времени работы в пользовательском режиме) суммарно для всех процессов.
6.8. У функций управления задачами есть один трудно устранимый недостаток.
6.9. Измените программу JobShell таким образом, чтобы информация сохранялась в реестре, а не во временном файле.
6.10. Измените программу JobShell таким образом, чтобы процессы связывались с объектом задачи. Наложите временные и другого рода ограничения на объекты задач, предоставив пользователю возможность ввода числовых значений некоторых из этих ограничений.
6.11. Улучшите программу JobShell таким образом, чтобы команда jobs обеспечивала подсчет числа дескрипторов, используемых каждой из задач. Подсказка. Воспользуйтесь функцией GetProcessHandleCount, для которой требуется NT 5.1.
6.12. Создайте проект Version (находится на Web-сайте), использующий программу verison.c. Попытайтесь произвести пробные запуски этой программы под управлением как можно большего числа различных версий Windows, к которым у вас имеется доступ, включая Windows 9x и NT 4.0, если это возможно. Каковы старшие и младшие номера версий для этих систем, полученные вами, и какую дополнительную информацию о версиях вам удалось получить?
ГЛАВА 7
Потоки и планирование выполнения
Основной единицей выполнения в Windows является поток, и одновременно несколько потоков могут выполняться в рамках одного процесса, разделяя его адресное пространство и другие ресурсы. В главе 6 процессы ограничивались только одним потоком, однако существует много ситуаций, в которых возможность использования более одного потока была бы весьма желательной. Настоящая глава посвящена описанию потоков и иллюстрации областей их применения. Глава 8 продолжает эту тему описанием объектов синхронизации и анализом как положительных, так и отрицательных аспектов использования потоков, в то время как в
Завершается настоящая глава кратким обсуждением облегченных потоков, посредством которых можно создавать отдельные задачи в контексте потоков. Ввиду того, что облегченные потоки используются довольно редко, можно предположить, что многие читатели предпочтут пропустить этот материал при первом чтении.
Обзор потоков
Поток (thread) — это независимая единица выполнения в контексте процесса. Программист, разрабатывающий многопоточную программу, должен организовать выполнение потоков таким образом, чтобы это позволило упростить программу и воспользоваться предоставляемыми самим хост-компьютером возможностями распараллеливания задач.
При традиционном подходе программы выполняются в виде единственного потока. Несмотря на возможность организации параллельного выполнения нескольких процессов, что было продемонстрировано на ряде примеров в главе 6, и даже их взаимодействия между собой посредством таких механизмов, как разделение памяти или каналы (глава 11), однопоточные процессы имеют ряд недостатков.
• Переключение между выполняющимися процессами потребляет заметную долю временных и других ресурсов ОС, а в случаях, аналогичных многопроцессному поиску (grepMP, программа 6.1), все процессы заняты выполнением одной и той же программы. Организация параллельной обработки файла с помощью потоков в контексте единственного процесса позволяет снизить общие накладные расходы системы.
• Не считая случаев разделения памяти, между процессами существует лишь слабая взаимосвязь, а организация разделения ресурсов, например, открытых файлов, вызывает затруднения.
• С использованием только однопоточных процессов трудно организовать простое и эффективное управление несколькими параллельно выполняющимися задачами, взаимодействующими между собой, в таких, например, случаях, как ожидание и обработка пользовательского ввода, ожидание ввода из файла или сети и выполнение вычислений.
• Тесно связанные с выполнением операций ввода/вывода программы, подобные рассмотренной в главе 2 программе преобразования файлов из ASCII в Unicode (atou, программа 2.4), вынуждены ограничиваться простой моделью "чтение-изменение-запись". При обработке последовательностей файлов гораздо эффективнее инициализировать выполнение как можно большего числа операций чтения. Windows NT предлагает дополнительные возможности перекрывающегося асинхронного ввода/вывода (глава 14), однако потоки позволяют добиться того же эффекта с меньшими усилиями.
• В SMP-системах планировщик Windows распределяет выполнение отдельных потоков между различными процессорами, что во многих случаях приводит к повышению производительности.
В этой главе обсуждаются потоки и способы управления ими. Использование потоков рассматривается на примере задач параллельного поиска и многопоточной сортировки содержимого файлов. Эти две задачи позволяют сопоставить применение потоков в операциях ввода/вывода и в операциях, связанных с выполнением интенсивных вычислений. Кроме того, в этой главе представлен общий обзор планирования выполнения процессов и потоков в Windows.