Системное программное обеспечение. Лабораторный практикум
Шрифт:
• для выделения в тексте и разбора лексем возможно применять простую, эффективную и хорошо проработанную теоретически технику анализа, в то время как на этапе синтаксического анализа конструкций исходного языка используются достаточно сложные алгоритмы разбора;
• лексический анализатор отделяет сложный по конструкции синтаксический анализатор от работы непосредственно с текстом исходной программы, структура которого может варьироваться в зависимости от версии входного языка – при такой конструкции компилятора при переходе от одной версии языка к другой достаточно только перестроить относительно простой лексический анализатор.
Функции, выполняемые лексическим анализатором, и состав лексем, которые он выделяет в тексте исходной программы, могут меняться в зависимости от версии компилятора. В основном лексические анализаторы
В большинстве компиляторов лексический и синтаксический анализаторы – это взаимосвязанные части. Где провести границу между лексическим и синтаксическим анализом, какие конструкции анализировать сканером, а какие – синтаксическим распознавателем, решает разработчик компилятора. Как правило, любой анализ стремятся выполнить на этапе лексического разбора входной программы, если он может быть там выполнен. Возможности лексического анализатора ограничены по сравнению с синтаксическим анализатором, так как в его основе лежат более простые механизмы. Более подробно о роли лексического анализатора в компиляторе и о его взаимодействии с синтаксическим анализатором можно узнать в [1–4, 7].
Проблема определения границ лексем
В простейшем случае фазы лексического и синтаксического анализа могут выполняться компилятором последовательно. Но для многих языков программирования информации на этапе лексического анализа может быть недостаточно для однозначного определения типа и границ очередной лексемы.
Иллюстрацией такого случая может служить пример оператора программы на языке Фортран, когда по части текста DO 10 I=1… невозможно определить тип оператора (а соответственно, и границы лексем). В случае DO 10 I=1.15 это будет присвоение вещественной переменной DO10I значения константы 1.15 (пробелы в Фортране игнорируются), а в случае DO 10 I=1,15 это цикл с перечислением от 1 до 15 по целочисленной переменной I до метки 10.
Другая иллюстрация из более современного языка программирования C++ – оператор присваивания k=i+++++j;, который имеет только одну верную интерпретацию (если операции разделить пробелами): k = i++ + ++j;.
Если невозможно определить границы лексем, то лексический анализ исходного текста должен выполняться поэтапно. Тогда лексический и синтаксический анализаторы должны функционировать параллельно, поочередно обращаясь друг к другу. Лексический анализатор, найдя очередную лексему, передает ее синтаксическому анализатору, тот пытается выполнить анализ считанной части исходной программы и может либо запросить у лексического анализатора следующую лексему, либо потребовать от него вернуться на несколько шагов назад и попробовать выделить лексемы с другими границами. При этом он может сообщить информацию о том, какую лексему следует ожидать. Более подробно такая схема взаимодействия лексического и синтаксического анализаторов описана в [3, 7].
Параллельная работа лексического и синтаксического анализаторов, очевидно, более сложна в реализации, чем их последовательное выполнение. Кроме того, такой подход требует больше вычислительных ресурсов и в общем случае большего времени на анализ исходной программы, так как допускает возврат назад и повторный анализ уже прочитанной части исходного кода. Тем не менее сложность синтаксиса некоторых языков программирования требует именно такого подхода – рассмотренный ранее пример программы на языке Фортран не может быть проанализирован иначе.
Чтобы избежать параллельной работы лексического и синтаксического анализаторов, разработчики компиляторов и языков программирования часто идут на разумные ограничения синтаксиса входного языка. Например, для языка C++ принято соглашение, что при возникновении проблем с определением границ лексемы всегда выбирается лексема максимально возможной длины.
В рассмотренном выше примере для оператора k=i+++++j; это приведет к тому, что при чтении четвертого знака + из двух вариантов лексем (+ – знак сложения в C++, а ++ – оператор инкремента) лексический анализатор выберет самую длинную – ++ (оператор инкремента) – и в целом весь оператор будет разобран как k = i++ ++ +j; (знаки операций разделены пробелами), что неверно,
В дальнейшем будем исходить из предположения, что все лексемы могут быть однозначно выделены сканером на этапе лексического анализа. Для всех современных языков программирования это действительно так, поскольку их синтаксис разрабатывался с учетом возможностей компиляторов.
Таблица лексем и содержащаяся в ней информация
Результатом работы лексического анализатора является перечень всех найденных в тексте исходной программы лексем с учетом характеристик каждой лексемы. Этот перечень лексем можно представить в виде таблицы, называемой таблицей лексем. Каждой лексеме в таблице лексем соответствует некий уникальный условный код, зависящий от типа лексемы, и дополнительная служебная информация. Таблица лексем в каждой строке должна содержать информацию о виде лексемы, ее типе и, возможно, значении. Обычно структуры данных, служащие для организации такой таблицы, имеют два поля: первое – тип лексемы, второе – указатель на информацию о лексеме.
Кроме того, информация о некоторых типах лексем, найденных в исходной программе, должна помещаться в таблицу идентификаторов (или в одну из таблиц идентификаторов, если компилятор предусматривает различные таблицы идентификаторов для различных типов лексем).
Внимание!
Не следует путать таблицу лексем и таблицу идентификаторов – это две принципиально разные таблицы, обрабатываемые лексическим анализатором.
Таблица лексем фактически содержит весь текст исходной программы, обработанный лексическим анализатором. В нее входят все возможные типы лексем, кроме того, любая лексема может встречаться в ней любое количество раз. Таблица идентификаторов содержит только определенные типы лексем – идентификаторы и константы. В нее не попадают такие лексемы, как ключевые (служебные) слова входного языка, знаки операций и разделители. Кроме того, каждая лексема (идентификатор или константа) может встречаться в таблице идентификаторов только один раз. Также можно отметить, что лексемы в таблице лексем обязательно располагаются в том же порядке, что и в исходной программе (порядок лексем в ней не меняется), а в таблице идентификаторов лексемы располагаются в любом порядке так, чтобы обеспечить удобство поиска.
В качестве примера можно рассмотреть некоторый фрагмент исходного кода на языке Object Pascal и соответствующую ему таблицу лексем, представленную в табл. 2.1:
Таблица 2.1. Лексемы фрагмента программы на языке Pascal
Поле «значение» в табл. 2.1 подразумевает некое кодовое значение, которое будет помещено в итоговую таблицу лексем в результате работы лексического анализатора. Конечно, значения, которые записаны в примере, являются условными. Конкретные коды выбираются разработчиками при реализации компилятора. Важно отметить также, что устанавливается связь таблицы лексем с таблицей идентификаторов (в примере это отражено некоторым индексом, следующим после идентификатора за знаком «:», а в реальном компиляторе определяется его реализацией).
Построение лексических анализаторов (сканеров)
Лексический анализатор имеет дело с такими объектами, как различного рода константы и идентификаторы (к последним относятся и ключевые слова). Язык описания констант и идентификаторов в большинстве случаев является регулярным, то есть может быть описан с помощью регулярных грамматик [1–4, 7]. Распознавателями для регулярных языков являются конечные автоматы (КА). Существуют правила, с помощью которых для любой регулярной грамматики может быть построен КА, распознающий цепочки языка, заданного этой грамматикой.