Сказки дедушки Амира по геометрии
Шрифт:
Таким образом, стали появляться новые сплошные плоские фигуры. Да, они занимали определенную часть двумерного пространства, то есть площадь. Получилось, что из одномерного Отрезка путем роста в ширину появилась двумерная фигура, по краям которой появились Отрезки, а в углах Точки. Эти фигуры нам известны из геометрии это – прямоугольники и квадраты. Потом появились сплошные треугольники, многоугольники. Теперь уже нельзя было назвать эти многоугольники
Точки и Отрезки подружились с Плитками и решили дальше путешествовать.
Откуда появились кубики и пирамидки?
Теперь уже Плитки вместе с Точками и Отрезками вырвались в трехмерное пространство, в котором было уже три измерения: длина, ширина и высота. А в трехмерном пространстве Плитки и Отрезки стали перемещаться друг относительно друга. Из этих пересечений рождались опять же Точки и Отрезки.
Когда Плитки пересекались, то в месте их пересечения появлялись Отрезки.
Когда Отрезок пересекался с плиткой, то в месте пересечения с Плиткой появлялась Точка.
А если три плитки пересекались, то в месте их пересечения появлялась…Точка!
Но когда Отрезок был параллелен Плитке, то он даже на продолжении, не пересекался с Плиткой.
Плитки, которые были параллельны друг другу, тоже не пересекались.
Отрезки в трехмерном пространстве то пересекались, то не пересекались между собой. Причем, если Отрезки пересекались или были параллельны между собой, то они находились внутри одной плоскости, то есть в двумерном мире.
А еще они могли располагаться между собой и не пересекаясь и не параллельно. Тогда через них нельзя было провести плоскость. В этом случае Отрезки назывались скрещивающимися.
В первом случае Отрезки a и b параллельны и находятся в плоскости . Во втором случае Отрезки c и d пересекаются и в пересечении рождают Точку А и находятся в плоскости . В третьем случае Отрезки k и m скрещиваются. Отрезок m лежит в плоскости , а Отрезок k пересекает плоскость и рождает Точку N.
Плитки стали пересекаться друг с другом и образовали трехмерные фигуры. При этом в месте пересечения двух плоскостей (граней) рождались Отрезки (ребра), а в месте пересечения нескольких плоскостей рождались Точки (вершины).
Первую фигуру назвали тетраэдром, вторую – кубом, третью – октаэдром, четвертую – икосаэдром и пятую – додекаэдром. Это – правильные многогранники, потому что у каждого этого многогранника одинаковые ребра и грани. А внутри них пустота, потому что они образованы из Плиток. Вскоре появились и неправильные трехмерные тела из пересечения Плиток: пирамиды, параллелепипеды, призмы и т.д.
У
Одна любопытная квадратная Плитка решила вырасти в высоту, то есть кроме длины и ширины у ней появилась высота и она стала похожа на куб. Но куб теперь стал сплошным, без пустоты. По краям этого куба появились квадратные Плитки (грани), по границам появились Отрезки (ребра), по углам появились Точки (вершины). И теперь у него появилось имя Кубик.
Треугольная Плитка тоже стала расти в толщину, но не расчитала силы и на какой-то высоте сузилась до точки. Теперь она стала похожа на треугольную сплошную пирамиду. По краям этой пирамиды появились треугольные плитки, по границам появились ребра, а по углам появились вершины. Теперь ее стали называть Пирамидкой.
Прыжок в четвертое измерение
Точки, Отрезки, Плитки подружились с Кубиком и Пирамидкой и решили пойти уже в четырехмерное пространство. У Кубика получился прыжок в четырехмерное пространство, то есть он как бы переместился по координате четырехмерного пространства.
А что за координата? Давайте представим, что Кубик переместился во времени, то есть вчера он был там, а сегодня оказался здесь. Причем эти моменты совпали, то есть мы видим Кубик вчерашний и сегодняшний одновременно. Аналогично и Пирамидка прыгнула в четырехмерное пространство.
У Станислава Лема, польского фантаста в путешествиях Йона Тихого описано одновременное появление вчерашнего и сегодняшнего космонавта в космическом корабле при пересечении спиралей времени.
Корабль попал в центр вихря около полуночи, вибрируя и постанывая всеми сочленениями. Я испугался, что он развалится, но он вышел из испытания с честью, а когда снова попал в объятия мертвой космической тишины, я покинул реакторный отсек и увидел самого себя сладко спящим на кровати. Я сразу понял, что это я из предыдущих суток, то есть из ночи понедельника.
Учения о многомерных пространствах начали появляться в середине XIX века. Идею четырехмерного пространства у ученых позаимствовали фантасты. В своих произведениях они поведали миру об удивительных чудесах четвертого измерения.
Герои их произведений, используя свойства четырехмерного пространства, могли съесть содержимое яйца, не повредив скорлупы, выпить напиток, не вскрывая пробку бутылки. Похитители извлекали сокровища из сейфа через четвертое измерение. Хирурги выполняли операции над внутренними органами, не разрезая ткани тела пациента.
На этом рисунке показан четырехмерный куб – тессеракт
3-куб состоит из: 8 вершин (точек), 12 ребер (отрезков), 6 плиток (квадратов), 1 – куба (кубика).
4-куб-Тессеракт состоит из: 16 вершин, 32 отрезков, 24 квадратов, 8 кубов.