Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:
Принцип неопределённости утверждает, что какие бы измерительные приборы или способы измерений вы не использовали, за увеличение разрешения при измерении одной величины неизбежно приходится платить — падает точность измерения некоторой дополнительной к ней величины. Одним из главных примеров проявлений принципа неопределённости является то, что чем точнее вы измеряете положение объекта, тем менее точно вы может измерить его скорость, и наоборот.
Для классической физики, той физики, которая во многом соответствует нашим интуитивным представлениям об устройстве этого мира, данное ограничение абсолютно чуждо. Однако как некую грубую аналогию, представьте себе процесс фотографирования той ехидной мухи. Если скорость затвора высока, получится контрастное изображение, на котором будет запечатлено положение мухи в тот момент, когда вы сделали снимок. Но из-за того, что это моментальный снимок, муха на нём неподвижна, и он не содержит никакой информации о её скорости. При уменьшении скорости затвора
С помощью математического аппарата квантовой механики Вернер Гейзенберг определил точный предел того, насколько неточным должно быть с необходимостью совместное измерение положения и скорости. Эта неизбежная неточность и есть то, что физики называют квантово-механической неопределённостью. Существует особенно полезный для наших целей способ представить этот результат. Так же как для получения контрастной фотографии необходима высокая скорость затвора, соотношение Гейзенберга показывает, что для проведения более точного измерения положения объекта требуется зонд с большей энергией. Включите ваш прикроватный светильник, и этот зонд — рассеянный, слабый свет — позволит вам разглядеть глаза и лапки у мухи; а если посветить на муху высокоэнергичными фотонами, такими как рентгеновские лучи (только не переусердствуйте, иначе можно поджарить муху), то большее разрешение позволит разглядеть мышцы, приводящие в движение мушиные крылья. При этом абсолютное разрешение, согласно Гейзенбергу, требует бесконечных затрат энергии. А это недостижимо.
Итак, самый главный вывод мы уже сделали. Из классической физики со всей очевидностью следует, что абсолютное разрешение не достижимо на практике. Квантовая механика идёт дальше и утверждает, что абсолютное разрешение не достижимо в принципе. Если вы представляете, что скорость и положение объекта, будь то муха или электрон, одновременно изменяются на достаточно малые значения, то согласно квантовой механике вы представляете нечто, не имеющее смысла. Изменения, слишком малые чтобы их измерить, даже в принципе, не являются изменениями вообще.{10}
С помощью тех же рассуждений, что мы использовали в доквантовом анализе мухи, можно видеть, что ограничение на разрешение уменьшает от бесконечного до конечного число различных значений положения и скорости объекта. И поскольку ограниченное разрешение, вытекающее из квантовой механики, вплетено в саму ткань физических законов, уменьшение числа возможностей до конечного неизбежно и неопровержимо.
Космическая многократность
Но хватит о назойливых мухах. Давайте теперь рассмотрим достаточно большую область пространства. Пусть её размер сопоставим с размером современного космического горизонта — сферы радиусом 41 миллиард световых лет. То есть рассмотрим область размером с лоскут космического одеяла. Давайте поместим туда не одну единственную муху, а много частиц материи и квантов излучения. Теперь вопрос: сколько есть способов для различной компоновки частиц?
Так же как в конструкторе «Лего»: чем больше кубиков у вас есть (чем больше вещества и излучения вы втиснули в область пространства) — тем больше число возможных компоновок. Но вы не можете втиснуть бесконечное количество кубиков. У частиц есть энергия, поэтому чем больше частиц, тем больше энергии. Если в области пространства слишком много энергии, она схлопнется под собственным весом, и возникнет чёрная дыра. [7] Если после образования чёрной дыры попытаться втиснуть в эту область ещё больше материи и энергии, то граница чёрной дыры (её горизонт событий) расширится, охватив ещё больше пространства. Таким образом, существует предел того, сколько материи и энергии может находиться в области пространства заданного размера. Для области пространства, сопоставимой по размерам с современным космическим горизонтом, этот предел невероятно велик (примерно 1056 грамм). Однако величина предела не играет главной роли. Главное, что этот предел существует.
7
Более полно чёрные дыры я буду обсуждать в последующих главах. Здесь же будем придерживаться укоренившегося в популярной литературе представления о чёрной дыре как о некоторой пространственной области — можно представить себе шар в пространстве, — гравитационное притяжение которой настолько велико, что ничего из пересекающего её границу не может вырваться обратно. Чем больше масса чёрной дыры, тем больше её размер. Поэтому когда что-нибудь падает в чёрную дыру, то увеличивается не только масса, но и размер чёрной дыры.
Количество энергии внутри космического горизонта конечно, поэтому число частиц тоже конечно, будь то электроны,
Ограниченность числа комбинаций разных платьев и туфель гарантирует, что спустя достаточное количество выходов в свет наряды Имельды начнут повторяться. Ограниченность числа различных карточных раскладов гарантирует, что если у Рэнди будет достаточно колод, то однажды итог очередного тасования карт обязательно повторит один из предыдущих. Рассуждая аналогично, мы придём к такому выводу: ограниченное количество компоновок частиц гарантирует, что при достаточном числе лоскутков в космическом одеяле, то есть при достаточном числе космических горизонтов, компоновки частиц, сравниваемые по-лоскутно, обязаны где-то повториться. Даже если бы вы могли выступить в роли космического дизайнера и попытались бы сделать так, чтобы каждый лоскуток отличался по дизайну от всех предыдущих, то в достаточно большом пространстве у вас закончатся свежие идеи, и вы будете вынуждены повторить вариант одного из предыдущих дизайнов.
В бесконечно большой вселенной многократность повторений вообще зашкаливает. Существует бесконечно много лоскутков на бесконечных просторах пространства, поэтому, при конечном наборе разных компоновок частиц, компоновки в лоскутках обязаны повторяться бесконечное число раз.
Как раз то, что нам нужно.
Ничего кроме физики
Анализируя следствия этого утверждения, я должен сразу сказать, куда клоню. Я считаю, что физическая система полностью определяется тем, как скомпонованы частицы, из которых она состоит. Скажите мне, какие возможные конфигурации допустимы для частиц, составляющих нашу планету, Солнце, галактику и всё остальное, и вы совершенно отчётливо опишите окружающую действительность. Такой редукционистский подход достаточно распространён среди физиков, но тем не менее, конечно же, есть люди, думающие иначе. Особенно, когда речь заходит о феномене жизни. Есть мнение, что должен существовать некий существенно нефизический аспект (дух, душа, жизненная сила, энергия ци и так далее), который одушевляет физический объект. Хотя я не исключаю такую возможность, но никогда не встречал какого-либо подтверждения этому. Наиболее осмысленная позиция для меня состоит в том, что физические и ментальные свойства кого-либо — это не более чем проявление способа организации частиц, составляющих чьё-либо тело. Задайте возможные конфигурации, и вы определите всё на свете.{12}
Придерживаясь такой точки зрения, можно сделать вывод, что если известные нам конфигурации частиц повторяются в другом лоскутке — в другом космическом горизонте, — то этот лоскуток будет во всём похож на наш. Это означает, что если вселенная простирается бесконечно, то вы не одиноки в своей реакции (какой бы она не была) на эту точку зрения об окружающей действительности. В глубине космоса существует множество ваших точных копий, ведущих и чувствующих себя точно так же как вы. И не существует никакого способа сказать, какая из них — это действительно вы. Все копии физически и, следовательно, ментально тождественны.
Можно даже оценить расстояние до ближайшей копии. Если конфигурации частиц случайно распределены от лоскутка к лоскутку (такое допущение согласуется с уточнённой космологической теорией, с которой мы познакомимся в следующей главе), то можно ожидать, что условия в нашем лоскутке будут повторяться столь же часто как и в любом другом. В каждой коллекции из 1010122 космических лоскутков будет, как мы ожидаем, в среднем один лоскуток, в точности похожий на наш.
То есть в каждой области пространства размером примерно 1010122 метров в поперечнике должен находиться один лоскуток, повторяющий наш, в котором находитесь вы, Земля, галактика и всё остальное, что населяет наш космический лоскуток.