Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:
Среди многих странностей, вскрытых теорией Эйнштейна, наиболее трудно для понимания то, что время течёт. И хотя повседневный опыт убеждает нас в объективности понятия течения времени, теория относительности доказывает, что это всего лишь артефакт жизни в условиях малой гравитации и на малых скоростях. На околосветовых скоростях и в сильных гравитационных полях привычная универсальная концепция времени быстро испаряется. Если вы мчитесь мимо меня, то события, одновременные с моей точки зрения, для вас будут происходить в разные моменты времени. Если вы зависли где-то вблизи чёрной дыры, один час на ваших часах для меня будет длиться бесконечно долго. Никакого гипноза или фокусов. Течение времени зависит от условий, в которых находится наблюдатель, — траектории его движения и действующей на него гравитации. [18]
18
Если
Применительно ко всей вселенной или к нашему инфляционному пузырьку это немедленно порождает вопрос: как такое податливое, зависящее от обстоятельств время согласуется с понятием абсолютного космологического времени? Мы уверенно говорим о «возрасте» нашей Вселенной, но если галактики быстро движутся относительно друг друга со скоростями, которые зависят от расстояния между ними, — разве тогда относительность течения времени не становится кошмарной проблемой для любого воображаемого вселенского хранителя времени? Более точно, когда мы говорим, что нашей Вселенной «14 миллиардов лет», используем ли мы для измерения этого промежутка времени какие-то конкретные часы?
Да, используем. Тщательное изучение этого космического времени вскрывает прямую связь между параллельными вселенными в инфляционной и лоскутной моделях вселенных.
Любой используемый нами метод измерения времени подразумевает учёт изменений, происходящих в какой-то конкретной физической системе. С помощью обычных настенных часов мы проверяем изменения в положении стрелок. С помощью Солнца мы проверяем изменения в его положении на небе. С помощью изотопа углерода C14 мы проверяем его процентное содержание в исходном образце, где происходит радиоактивный распад с выделением азота. Исторический опыт и общая договорённость привели нас к использованию орбитального вращения Земли и вращения вокруг своей оси в качестве физических реперных точек, что приводит к стандартным понятиям «дня» и «ночи». Но когда мы размышляем о космических масштабах, то существует другой, более полезный метод измерения времени.
Мы видели, что инфляционное расширение приводит к огромным областям с однородными в среднем свойствами. Измерьте температуру, давление и среднюю плотность вещества в двух больших, но удалённых областях одной дочерней вселенной, и результаты совпадут. Они могут изменяться во времени, но однородность на больших масштабах гарантирует, что, в среднем, изменение здесь такое же, как изменение там. Важный наглядный пример — это обусловленное постоянным расширением пространства уменьшение плотности массы в нашем пузырьке-вселенной, происходящее в течение нашей многомиллиардной истории. Однако, поскольку уменьшение происходит однородно, то однородность на больших расстояниях в нашем пузырьке-вселенной не нарушилась.
Это важно, потому что подобно тому, как устойчиво уменьшающееся количество изотопа углерода C14 в органическом мире даёт способ измерения времени на Земле, постоянно уменьшающаяся плотность массы даёт способ измерения времени во Вселенной. Поскольку уменьшение плотности происходит однородно, плотность массы как маркер течения времени обеспечивает наш пузырёк-вселенную единым стандартом. Если каждый из нас аккуратно установит время на своих часах в соответствии со средней плотностью массы (перенастройка обязательно понадобится после путешествия к чёрной дыре, либо после путешествий с околосветовыми скоростями), то все часы во Вселенной будут синхронизированы. Когда мы говорим о возрасте Вселенной, то есть о возрасте нашего пузырька, то речь идёт о времени, измеренном по таким воображаемым космическим синхронизированным часам. Единое космическое время осмысленно, только если оно измерено по таким часам.
Такой же вывод справедлив для раннего пузырька-вселенной, но с одной оговоркой. Обычное вещество ещё не сформировалось, поэтому нельзя говорить о средней плотности массы в пространстве. Наоборот,
Теперь вспомним, что энергия инфлатона задаётся его значением, что отражается кривой потенциальной энергии. Таким образом, чтобы определить время в заданной точке в нашем пузырьке-вселенной, мы должны определить в этой точке значение инфлатона. Затем, подобно тому как два дерева имеют одинаковый возраст, если у них одинаковое количество колец, а два образца ледникового отложения имеют одинаковый возраст, если процентное содержание изотопа углерода в них совпадает, — две точки пространства находятся в том же времени, если значения поля инфлатона в этих точках одинаковы. Таким способом мы устанавливаем и синхронизируем часы в нашем пузырьке-вселенной.
Причина, по которой я всё это обсуждаю, в том, что в приложении к космическому швейцарскому сыру инфляционной мультивселенной из этих размышлений следует вывод, который резко противоречит здравому смыслу. Подобно Гамлету, восклицавшему: «О боже, я бы мог замкнуться в ореховой скорлупе и считать себя царём бесконечного пространства» [19] , — каждая из дочерних вселенных, выросших из пузырьков, обладает конечной пространственной протяжённостью, если на неё смотреть снаружи, но бесконечной, если смотреть изнутри. Осознание этого факта бесподобно. Именно бесконечное пространство необходимо для лоскутных параллельных вселенных. Поэтому теперь мы можем ввести лоскутную мультивселенную в инфляционный сценарий.
19
Перевод М. Лозинского. (Прим. перев.)
Крайнее несоответствие между внутренней и внешней перспективами возникает из-за того, что представления о времени внутреннего и внешнего наблюдателей совершенно не совпадают. Хотя это совсем не очевидно, но сейчас мы увидим, что то, что внешнему наблюдателю кажется бесконечным временем, для внутреннего наблюдателя в каждый данный момент времени кажется бесконечным пространством. [20]
Пространство в дочерней вселенной
20
Этот результат (и родственные идеи) был получен рядом исследователей в различных контекстах и наиболее чётко выражен Александром Виленкиным, а также Сидни Коулменом и Фрэнком де Луччией.
Чтобы понять, как такое может быть, представьте себе некую молодую даму по имени Трикси, которая, путешествуя вместе с быстро расширяющейся областью пространства, заполненного инфлатоном, наблюдает образование из находящегося поблизости пузырька дочерней вселенной. Направив свой инфлатонный детектор на растущий пузырёк, она сможет напрямую зафиксировать изменение значения поля инфлатона. И хотя эта область — дырка в космическом сыре — трёхмерна, проще измерить поле вдоль какой-нибудь одномерной линии поперечного сечения по диаметру, и если Трикси так поступит, то получит данные, приведённые на рис. 3.8а. Строчки показывают значение инфлатона, измеренного последовательно во времени (чем выше, тем позже по времени) с точки зрения Трикси. Из рисунка очевидно, что Трикси видит пузырёк постоянно растущим (более светлые области на рисунке соответствуют меньшим значениям инфлатона).
Рис. 3.8а. По строкам указана величина инфлатона в определённый момент времени с точки зрения внешнего наблюдателя. Чем выше строка, тем более позднему моменту она соответствует. Столбцы соответствуют положению в пространстве. Пузырёк — это такая область пространства, в которой инфляция закончилась из-за уменьшения значения инфлатона. Всё более и более светлые клетки соответствуют величине инфлатона внутри пузырька. С точки зрения внешнего наблюдателя пузырёк всё время увеличивается