Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
Шрифт:
Нельзя сказать того же о другом свойстве нашей модели, отражающем один из основных принципов биологии. Форма потомка не создается непосредственно из родительской формы. Очертания каждой новой биоморфы определяются значениями ее собственных девяти генов (влияющих на величину углов, протяженность линий и т. п.), и каждый потомок получает свои девять генов от родительской девятки. В реальной жизни происходит ровно то же самое. Следующему поколению передается не тело — передаются гены, и только они. Гены влияют на эмбриональное развитие того тела, в котором находятся. Затем эти же гены либо передаются следующему поколению, либо нет. Участие в индивидуальном развитии организма никак не влияет на природу генов, однако вероятность их дальнейшей передачи может зависеть от успеха того тела, которое они помогали строить. Вот почему необходимо, чтобы в нашей компьютерной модели два этих процесса — РАЗВИТИЕ и РАЗМНОЖЕНИЕ — были отделены друг от друга, как два водонепроницаемых отсека. Перегородка, разделяющая их, абсолютно герметична за исключением того момента,
Итак, мы составили два наших программных модуля, обозначенных как РАЗВИТИЕ и РАЗМНОЖЕНИЕ. РАЗМНОЖЕНИЕ занимается тем, что передает гены из поколения в поколение с определенной вероятностью мутации. В каждом отдельно взятом поколении РАЗВИТИЕ берет предоставленные РАЗМНОЖЕНИЕМ гены и преобразует их в действие по вычерчиванию фигурок, благодаря чему те появляются на экране компьютера. Настало время объединить эти два алгоритма в одну большую программу под названием ЭВОЛЮЦИЯ.
В сущности, ЭВОЛЮЦИЯ — это бесконечно повторяющееся РАЗМНОЖЕНИЕ. В каждом поколении РАЗМНОЖЕНИЕ получает гены от предыдущего поколения и передает их следующему — но с небольшими случайными изменениями, мутациями. Мутация состоит в том, что к значению какого-то случайно выбранного гена прибавляется +1 или –1. Из этого следует, что в ряду сменяющих друг друга поколений генетические отличия от исходного предка мало-помалу накапливаются и становятся очень большими. Но при всей случайности мутаций эти накапливаемые из поколения в поколение изменения не случайны. В любом отдельно взятом поколении биоморфы-потомки отличаются от своей родительницы случайным образом. Но в том, кто именно из этих потомков будет отобран, чтобы дать начало следующему поколению, случайности уже нет. Вот тут-то и начинает действовать дарвиновский отбор. Критерием для него служат не гены сами по себе, а организмы, на форму которых гены оказывают влияние в ходе РАЗВИТИЯ.
Помимо самовоспроизводства при РАЗМНОЖЕНИИ гены еще и передаются в каждом поколении подпрограмме РАЗВИТИЕ, которая вычерчивает на экране соответствующие организмы, следуя своим собственным строго установленным правилам. В каждом поколении нам показывается весь “выводок” “детенышей” (то есть биоморф следующего поколения). Все они являются мутантными дочерьми одного и того же родительского организма, и каждая отличается от него по какому-то одному гену. Такая невероятно высокая частота мутаций — свойство откровенно небиологическое. В действительности вероятность того, что ген мутирует, составляет зачастую меньше единицы на миллион. Причина, почему в программу был заложен такой высокий уровень мутаций, заключается в том, что все это разворачивающееся на экране компьютера действо предназначалось для человеческих глаз. Ни у какого человека не хватит терпения дожидаться одной мутации в течение миллионов поколений!
Человеческий глаз вообще сыграет в этой истории важную роль. Он будет осуществлять отбор — рассматривать всех потомков в выводке и оставлять одного на разведение. Выбранный таким образом организм даст начало следующему поколению, и теперь уже его мутантные детеныши будут все разом представлены на экране. Человеческий глаз выполняет здесь абсолютно ту же функцию, что и при выведении породистых собак или декоративных роз. Другими словами, наша модель является, строго говоря, моделью не естественного отбора, а искусственного. При настоящем естественном отборе дело обстоит так: если организм обладает качествами, нужными для выживания, то его гены выживают автоматически, поскольку находятся внутри него. То есть само собой выходит, что гены, которые выживают, это и есть те гены, которые сообщают организмам признаки, помогающие выжить. В нашей же компьютерной модели критерием отбора служит не выживание организма, а его способность отвечать человеческой прихоти. Прихоть не обязательно долж на быть праздной и случайной — ничто не мешает нам проводить селекцию по какому-то определенному признаку, такому как, например, “сходство с плакучей ивой”. Однако в моем случае человек-отборщик чаще всего был капризным и беспринципным, что не так уж отличается от некоторых разновидностей естественного отбора.
Человек указывает компьютеру, какую биоморфу из имеющегося выводка оставить для продолжения рода. Гены избранницы передаются подпрограмме РАЗМНОЖЕНИЕ, и приходит время следующему поколению появиться на свет. Подобно реальной эволюции живого этот процесс может продолжаться бесконечно. Биоморфа из любого поколения находится всего в одном мутационном шаге как от своей предшественницы, так и от наследницы. Но по прошествии 100 циклов программы ЭВОЛЮЦИЯ наши биоморфы могут оказаться где угодно в пределах 100 шагов от своего исходного предка. А 100 мутационных шагов могут далеко завести.
Однако, начиная играть с только что написанной программой ЭВОЛЮЦИЯ, я и вообразить не мог, насколько далеко. Первое, что меня удивило, — это то, как быстро мои биоморфы перестали быть похожими на деревья. Исходное раздваивание ветвей никуда не делось, но оказалось, что его можно с легкостью завуалировать многократным пересечением линий, образующим сплошные цветовые пятна (иллюстрации, увы, только черно-белые). На рисунке 4 показана одна конкретная история эволюционных преобразований,
Давайте посмотрим на рис. 4 и кратко пройдемся по первым нескольким поколениям “генеральной линии” эволюции. Во 2-м поколении точка превращается в букву Y. В течение следующих двух поколений Y увеличивается в размерах. Затем ее рога немного искривляются, как у хорошей рогатки. В 7-м поколении искривленность усиливается, и две “ветви” почти что соприкасаются кончиками. В поколении 8 они удлиняются и приобретают по паре маленьких отростков. В следующем, 9-м поколении эти отростки пропадают, а рукоятка рогатки становится более вытянутой. Поколение 10 напоминает цветок в разрезе: изогнутые боковые ветви, подобно лепесткам, обрамляют центральный вырост-“рыльце”. В 11-м поколении “цветок” укрупняется, и его форма становится чуть более сложной.
Нет нужды продолжать этот рассказ. На протяжении всех 29 поколений картинка говорит сама за себя. Обратите внимание, как мало каждая биоморфа отличается от своей предшественницы в ряду поколений и от своих сестер. Но раз каждая отличается от своей родительницы, то следует ожидать, что от своей бабки (и от своих внучек) она будет отличаться несколько больше, а от прабабки (и от правнучек) еще больше. Вот в чем суть накапливающей эволюции, хотя мы и разогнали ее до совершенно невероятной скорости, установив такую высокую частоту мутаций. По этой причине рис. 4 больше смахивает на родословную видов, а не особей, но принцип остается тем же.
Рис. 4
Составляя программу, я никак не думал, что она сможет выдать что-нибудь кроме различных древовидных форм. Я ожидал плакучих ив, ливанских кедров, пирамидальных тополей, водорослей, в крайнем случае — оленьих рогов. Ни моя биологическая интуиция, ни мой 20-летний опыт программиста, ни самые дерзкие из моих фантазий — ничто не подготовило меня к тому, что я увидел на экране. Уже не помню, в какой именно момент меня осенило, что из получающейся последовательности может выйти нечто, напоминающее насекомое. Охваченный этой нелепой догадкой, я из поколения в поколение стал отбирать те биоморфы, которые были похожи на насекомых хоть сколько-нибудь больше других. Чем сильнее проступало сходство, тем меньше я верил своим глазам. Итоговые результаты можно увидеть в нижней части рис. 4. Правда, у них восемь ножек, как у пауков, а не шесть, как положено насекомым, — и тем не менее! До сих пор не могу удержаться и не поделиться с вами тем чувством ликования, которое я испытал, когда эти изящные существа впервые возникли передо мной на экране. В голове отчетливо зазвучали торжествующие начальные аккорды из “Так говорил Заратустра” (главный мотив в фильме “Космическая одиссея 2011 года”). От волнения я не мог есть, а ночью, когда попытался заснуть, у меня перед глазами, стоило лишь закрыть их, кишели “мои” насекомые.
Существуют и продаются компьютерные игры, в которых игроку кажется, будто он блуждает по подземному лабиринту, имеющему определенную, хотя и сложную, географию, и встречает там драконов, минотавров и прочих сказочных противников. Эти чудовища не слишком разнообразны, и все они, так же как и сам лабиринт, были разработаны человеческим разумом программиста. В эволюционной игре — как компьютерной, так и реальной — у игрока (или у наблюдателя) тоже создается впечатление, что он, образно говоря, бродит по лабиринту разветвленных коридоров, но только количество возможных маршрутов практически бесконечно, а монстры, встречающиеся на пути, непредумышленны и непредсказуемы. Когда я скитался по закоулкам Страны биоморф, мне попадались жаброногие рачки, храмы ацтеков, окна готических соборов, наскальные изображения кенгуру, а однажды — памятный, но не желающий воспроизводиться случай — вполне приемлемая карикатура на теперешнего уайкхемовского профессора логики. На рисунке 5 представлены еще некоторые трофеи из моей коллекции, все полученные одним и тем же способом. Хочу подчеркнуть: эти изображения — не плод фантазии художника. Никогда и никоим образом их не дорисовывали и не подправляли. Они именно такие, какими их вычертил компьютер, внутри которого они эволюционировали. Роль человеческого глаза сводилась только к тому, чтобы выбирать варианты из потомства, случайно мутировавшего в течение многих поколений накапливающей эволюции.