Слепой геометр
Шрифт:
С 2043 года — профессор математики в университете Джорджа Вашингтона.
ОА. Холодным весенним днем, отправившись за второй чашечкой кофе, я столкнулся в факультетской столовой, где обычно никто не задерживается, с Джереми Блесингеймом.
— Привет, Карлос. Как дела?
— Замечательно, — отозвался я, шаря рукой по столу в поисках сахарницы. — А у вас?
— Тоже неплохо. Правда, мне тут задали одну задачку… Крепкий оказался орешек.
Джереми работал на Пентагон (что-то, связанное с военной разведкой), однако предпочитал не распространяться о своей деятельности,
— Да? — проговорил я, зачерпнув ложкой сахарного песку.
— Понимаете, речь идет о коде. Думаю, это вас заинтересует.
— Я не силен в криптографии.
В шпионских головоломках математики, как правило, раз-два и обчелся. Я принюхался и уловил аромат сахара, растворяющегося в дрянном кофе.
— Знаю, но… — в голосе Джереми послышался намек на раздражение. Естественно, как определить, слушаю я или нет? (Безразличие — разновидность самоконтроля). — Возможно, что это геометрический код. Дело в том, что одна подследственная рисует чертежи.
Подследственная? Ну и ну! Несчастный шпион, который что-то там царапает в своей камере…
— Я принес один из чертежей. Знаете, я сразу вспомнил о теореме, которую вы обсуждали в своей последней статье. Может, это проекция?
— Да?
— Да. Вдобавок, чертежи, как нам кажется, имеют какое-то отношение к ее речи. Она путает порядок слов, употребляет их как попало…
— Что с ней случилось?
— Ну… Пожалуйста, вот чертеж.
— Хорошо, посмотрю, — сказал я, протягивая руку.
— В следующий раз, когда вам захочется кофе, попросите меня. В моем кабинете стоит кофеварка.
— Договорились.
АВ. Полагаю, всю свою жизнь я задумывался над тем, что такое «видеть». Моя работа, несомненно, представляла собой попытку рассмотреть вещи внутренним зрением. Я видел «через чувства». Через язык, через музыку и, прежде всего, через геометрические правила. Со временем определились наилучшие способы «видения»: по аналогии с прикосновением, со звуком, с абстракциями. Понимать — познать геометрию во всех ее подробностях, чтобы надлежащим образом воспринимать физический мир, доступ в который открывает свет; в итоге обнаруживаешь нечто вроде платоновских идеальных форм, что скрываются за видимыми явлениями. Порой звон понимания заполнял все мое естество, и мне казалось, что я должен видеть, именно должен. Я верю, что вижу.
Но когда приходится переходить улицу иди искать ключи, которые лежат не на месте, от геометрии толку мало, и ты вновь вынужден пользоваться вместо глаз ушами и руками, после чего в очередной раз сознаешь, что видеть, увы, не видишь.
ВС. Попробую объяснить иначе. Проективная геометрия появилась в эпоху Ренессанса, к ней прибегали художники, заново заинтересовавшиеся перспективой, чтобы справиться с трудностями изображения на холсте трехмерного пространства. Так геометрия быстро стала изящной и могучей математической дисциплиной. Выразить ее суть не составит труда.
Геометрическая фигура на рисунке проецируется из одной плоскости в другую (мне говорили, что свет точно так же проецирует на стену картинку слайда). Заметьте, что, хотя
— в треугольнике А'В'С" меняются, прочие остаются неизменными: точки по-прежнему точки, линии — линии; кроме того, сохраняются и отдельные пропорции.
Теперь вообразите, что видимый мир — треугольник АВС (метод редукции). Представьте, что он проецируется внутрь себя, на что-то иное, не На плоскость, а, скажем, на лист Мебиуса или на бутылку Клейна, или же, как в действительности, на более сложное пространство с весьма любопытными, уверяю вас, свойствами. Треугольник утратит ряд характеристик — к примеру, цвет, — но кое-что и сохранит. Так вот, проективная геометрия — искусство определения: какие характеристики, какие качества «пережгли» трансформацию…
Понимаете?
Способ познания мира, образ мышления, философия, выражение своей сущности. Видение. Геометрия для одного человека. Разумеется, неевклидова, точнее — чисто невскианская, предназначенная помогать мне проецировать зрительное пространство в слуховое, в осязательное, в мир внутри.
ОА. Когда мы снова встретились с Блесингеймом, он тут же спросил, что я думаю насчет чертежа. (Возможна как акустика, так и математика эмоций: уши слепых выполняют подобные вычисления каждый день; я сразу почувствовал, что Джереми волнуется.)
— Одного чертежа недостаточно. Вы правы, он смахивает на простую проекцию, однако там присутствуют странные поперечные линии. Кто знает, что они означают? Вообще же впечатление такое, что рисовал ребенок.
— Она не так уж молода. Принести еще?
— Что ж… — признаться, я был заинтригован. Новоявленная Мата Хари в пентагоновской темнице рисует геометрические фигуры и отказывается говорить иначе как загадками…
— Держите. Я на всякий случай захватил с собой. По-моему, тут можно проследить некую последовательность.
— Было бы куда проще, если бы я мог поговорить с этой вашей чертежницей.
— Не думаю. Хотя, — прибавил он, заметив мое раздражение, — если хотите, я, наверное, смогу ее привести.
— Чертежи можете оставить.
— Отлично, — в голосе Джереми слышалось не только облегчение: напряжение, торжество, страх и предвкушение… чего-то. Нахмурившись, я забрал у него чертежи.
Позднее я пропустил листы через специальный ксерокс, который выдавал копии с выпуклым текстом, и медленно провел пальцами по линиям и буквам.
Должен признаться: большинство геометрических чертежей не имеет для меня ни малейшей ценности. Если вдуматься, легко понять почему: это двухмерные представления о том, на что похожи трехмерные конструкции. То есть такие чертежи для слепого бесполезны, только запутывают. Скажем, я чувствую трапецоид; что он означает — именно трапецоид или какой-то прямоугольник, не совпадающий с листом, на котором изображен?
Или общепринятое представление плоскости? Ответ содержится лишь в описании чертежа. Без описания я могу всего-то навсего предполагать, что такое одна или другая фигура. Куда проще с трехмерными моделями, которые можно и ощупать руками.