Собрание сочинений, том 20
Шрифт:
Таковы приблизительно все случаи, в которых употребляется в механике mv. Рассмотрим теперь несколько случаев, в которых применяется mv2.
Когда ядро вылетает из пушки, то при своем полете оно потребляет количество движения, пропорциональное mv2, все равно, ударится ли оно в твердую мишень или же перестанет двигаться благодаря сопротивлению воздуха и силе тяжести. Если железнодорожный поезд сталкивается с другим, стоящим неподвижно поездом, то сила столкновения и соответствующее разрушение пропорциональны его mv2. Точно так же мы имеем дело с mv2при вычислении всякой механической силы, потребной для преодоления некоторого сопротивления.
Но что собственно значит это удобное и столь распространенное среди механиков выражение: преодоление некоторого сопротивления?
Когда, поднимая некоторый груз, мы преодолеваем сопротивление тяжести, то при этом исчезает некоторое количество движения [Bewegungsmenge], некоторое
Итак, что же произошло при поднимании груза? Механическое движение, или механическая сила исчезла как таковая. Но она не превратилась в ничто: она превратилась в механическую силу напряжения, как выражается Гельмгольц, в потенциальную энергию, как выражаются новейшие авторы, в эргаль, как называет ее Клаузиус, и в любое мгновение она может быть превращена любым механически допустимым способом обратно в то же самое количество механического движения, которое было необходимо для порождения ее. Потенциальная энергия есть только отрицательное выражение для живой силы, и наоборот.
24-фунтовое пушечное ядро ударяется со скоростью 400 м в секунду в железный борт броненосца толщиной в 1 м и при этих условиях не оказывает никакого видимого действия на броню судна. Таким образом, здесь исчезло механическое движение, равное mv2/2, т. е., так как 24 фунта = 12 кг [Немецкий фунт = 500 г. Ред.], равное 12x400x400x1/2 = 960000 килограммометров. Что же сталось с этим движением? Незначительная часть его пошла на то, чтобы вызвать сотрясение в железной броне и произвести в ней перемещение молекул. Другая часть послужила для того, чтобы раздробить ядро на бесчисленные осколки. Но самая значительная часть превратилась в теплоту, нагрев ядро до температуры каления. Когда пруссаки при переправе на остров Альс в 1864 г. направили свою тяжелую артиллерию против бронированных бортов «Рольфа Краке» [322] , то при каждом удачном попадании они видели в темноте сверкание внезапно раскалявшегося ядра, а Уитворт доказал уже раньше путем опытов, что разрывные снаряды, направляемые против броненосцев, не нуждаются в запальнике: раскаленный металл сам воспламеняет заряд взрывчатого вещества. Если принять механический эквивалент единицы теплоты равным 424 килограммометрам [323] , то вышеприведенному количеству механического движения соответствуют 2264 единицы теплоты. Теплоемкость железа равняется 0,1140; это значит, что то же самое количество теплоты, которое нагревает 1 кг воды на 1° С и которое принимается за единицу теплоты, способно нагреть на 1° Цельсия 1/0,1140 = 8,772 кг железа. Следовательно, вышеприведенные 2264 единицы теплоты поднимают температуру 1 кг железа на 8,772x2264=19860° С или же 19860 кг железа на 1°. Так как это количество теплоты распределяется равномерно между броней судна и ударившим в нее ядром, то последнее нагревается на 19860/2x12 = 828° , что уже представляет довольно значительную степень накаливания. Но так как передняя, ударяющая половина ядра получает во всяком случае значительно большую часть теплоты — примерно вдвое больше, чем задняя половина, — то первая нагреется до 1104°, а вторая до 552° С, что вполне достаточно для объяснения явления раскаливания, даже если мы сделаем значительный вычет в пользу действительно произведенной при ударе механической работы.
322
Речь идет об одном из сражений в период датской войны 1864 г., в которой против Дании участвовали Пруссия и Австрия.
«Рольф Краке» — датский броненосец, стоявший в ночь с 28 на 29 июня 1864 г. у берегов острова Альса и имевший задание помешать переправе прусских войск на остров.
323
В настоящее время, на основе более точных измерений, механический эквивалент теплоты принимается равным 426,9 кгм.
При трении точно так же исчезает механическое движение, появляющееся снова в виде теплоты. Как известно, Джоулю в Манчестере и Кольдингу в Копенгагене удалось при помощи возможно более точного измерения обоих взаимно соответствующих процессов впервые установить экспериментальным образом с известным приближением механический эквивалент теплоты.
То же самое происходит при получении электрического тока в магнитоэлектрической машине посредством механической силы, например, паровой машины. Производимое в определенное время количество так называемой электродвижущей силы пропорционально — а если выразить его в той же самой единице измерения, то и равно — потребленному в это же самое время количеству механического движения. Мы можем также представить себе, что это последнее производится не паровой машиной, а опускающейся в силу тяжести гирей. Механическая сила, отдаваемая этой гирей, измеряется живой силой, которую она приобрела бы, если бы свободно упала с такой же высоты, или же силой, необходимой, чтобы снова поднять ее на первоначальную высоту, т. е. измеряется в обоих случаях через mv2/2.
Таким образом, мы находим, что
Таким образом, ясно, что спор Лейбница с картезианцами отнюдь не был простым спором о словах и что Д'Аламбер по существу ничего не разрешил своим «суверенным решением». Д'Аламбер мог бы не утруждать себя тирадами о неясности воззрений своих предшественников, ибо его собственные взгляды были столь же неясны. И действительно, в этом вопросе должна была оставаться неясность, пока не знали, что делается с уничтожающимся как будто механическим движением. И пока математические механики вроде Зутера упорно остаются в четырех стенах своей специальной науки, до тех пор и в их головах, как и в голове Д'Аламбера, будет царить неясность, и они должны будут угощать нас пустыми и противоречивыми фразами.
Но как же выражает современная механика это превращение механического движения в другую форму движения, количественно пропорциональную первому? Это движение, — говорит механика, — произвело работу, и притом такое-то ц такое-то количество работы.
Но понятие работы в физическом смысле не исчерпывается этим. Если теплота превращается — как это имеет место в паровой или калорической машине — в механическое движение, т. е. если молекулярное движение превращается в движение масс, если теплота разлагает какое-нибудь химическое соединение, если она превращается в термоэлектрическом столбе в электричество, если электрический ток выделяет из разбавленной серной кислоты составные элементы воды или если, наоборот, высвобождающееся при химическом процессе какого-нибудь гальванического элемента движение (alias [иначе говоря. Ред] энергия) принимает форму электричества, а это последнее в свою очередь превращается в замкнутой цепи в теплоту, — то при всех этих явлениях форма движения, начинающая процесс и превращающаяся благодаря ему в другую форму, совершает работу, и притом такое количество работы, которое соответствует ее собственному количеству.
Таким образом, работа — это изменение формы движения, рассматриваемое с его количественной стороны.
Но как же это? Неужели, когда поднятая гиря остается спокойно висеть наверху, то ее потенциальная энергия во время покоя тоже является формой движения? Несомненно. Даже Тейт пришел к убеждению, что эта потенциальная энергия впоследствии примет форму действительного движения («Nature») [324] , а Кирхгоф, помимо этого, идет еще гораздо дальше, говоря:
«Покой — это частный случай движения» («Математическая механика», стр. 32), и доказывая этим, что он способен не только вычислять, но и диалектически мыслить.
324
Энгельс имеет в виду доклад П. Г. Тейта «Сила», прочитанный 8 сентября 1876 г. на состоявшемся в Глазго 46-м съезде Британской ассоциации содействия прогрессу науки. Доклад был напечатан в журнале «Nature» № 360 от 21 сентября 1876 года.
«Nature. A Weekly Illustrated Journal of Science» («Природа. Еженедельный иллюстрированный научный журнал») — английский естественнонаучный журнал, издается в Лондоне с 1869 года.
Таким образом, при рассмотрении обеих мер механического движения мы получили мимоходом и почти без усилий понятие работы, о котором нам говорили, что его так трудно усвоить без математической механики. И во всяком случае мы знаем теперь о нем больше, чем из доклада Гельмгольца «О сохранении силы» (1862), в котором он как раз задается целью
«изобразить с возможно большей ясностью основные физические понятия работы и ее неизменности».
Все, что мы узнаём у Гельмгольца о работе, сводится к тому, что она есть нечто, выражающееся в футо-фунтах или же в единицах теплоты, и что число этих футо-фунтов или единиц теплоты неизменно для определенного количества работы; далее, что, кроме механических сил и теплоты, работу могут производить также и химические и электрические силы, но что все эти силы исчерпывают свою способность к работе, по мере того как они действительно производят работу, и что отсюда следует, что сумма всех способных к действию количеств силы в мировом целом, при всех происходящих в природе изменениях, остается вечно и неизменно одной и той же. Понятие работы не развивается у Гельмгольца и даже не определяется им [Не лучших результатов мы добьемся у Клерка Максвелла. Этот последний говорит («Теория теплоты», 4 изд., Лондон, 1875, стр. 87): «Работа производится, когда преодолевается сопротивление», и (стр. 185) «энергия какого-нибудь тела — ото его способность производить работу» [325] . Это все, что мы узнаём у Максвелла насчет работы.]. И именно количественная неизменность величины работы мешает ему видеть то, что основным условием всякой физической работы является качественное изменение, перемена формы. Поэтому-то Гельмгольц и договаривается до утверждения, что
325
J. С. Maxwell. «Theory of Heat». 4th ed., London, 1875, p. 87, 185.