Сокровища звездного неба
Шрифт:
Малый школьный рефрактор — назовем так этот телескоп — позволяет наблюдать звезды до 11 m и различать в отдельности две звезды, если угловое расстояние между ними не меньше 2,4 секунды дуги. Гораздо совершеннее школьный менисковый телескоп системы Д.Д.Максутова. В чем преимущества этой системы телескопов перед обычными телескопами-рефракторами?
В телескопе-рефракторе объективом служит положительная, собирательная линза или система из двух линз, действующая совместно, как одна собирательная линза. Объектив, собирая лучи
И объектив, и окуляр телескопа имеют определенные фокусные расстояния (так называют расстояния от этих линз до даваемых ими четких изображений далеких предметов). Можно легко доказать, что увеличение телескопа равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Так, например, если фокусное расстояние объектива равно 1 м, а фокусное расстояние окуляра 1 см, то телескоп будет увеличивать ровно в 100 раз. Иначе говоря, в такой телескоп все небесные светила мы увидим под углом в сто раз большим, чем невооруженным глазом.
В телескопе-рефлекторе объективом служит вогнутое параболическое зеркало. Даваемое им изображение светила обычно отражается с помощью зеркала или призмы в боковой окуляр, укрепленный на тубусе (трубе) рефлектора. Бывают и такие рефлекторы, в главном зеркале которых сделано отверстие для окуляра. При всех достоинствах рефракторов и рефлекторов они обладают существенными недостатками. Их оптические части (линзы и зеркала) вносят в изображение небесных тел искажения, которые называются аберрациями.Из них главными являются сферическаяи хроматическая аберрации.
Краевые части собирательной линзы преломляют световые лучи параллельного пучка сильнее, чем ее центральные части. Из-за этого точка схождения «краевых» лучей — их фокус — расположена ближе к линзе, чем фокус «центральных» лучей. В этом заключается сферическая аберрация, которая проявляется в размытости даваемых линзой изображений. Точнее говоря, из-за сферической аберрации или края изображения бывают размытыми (не «в фокусе»), или его центральные части. Достичь же одинаковой четкости изображения во всех его частях не удается.
Иной характер носит хроматическая аберрация. Она выражается в том, что лучи разного цвета преломляются линзой по-разному — фиолетовые, например, сильнее, чем красные. Из-за этого изображение небесного светила выглядит окрашенным в радужные цвета, что, конечно, также мешает наблюдениям.
Для ослабления аберраций объективы рефракторов монтируют из двух (а иногда и трех) линз. Первая из них двояковыпуклая, вторая —плосковогнутая. Сложенные вместе, они действуют, как одна собирательная плосковыпуклая линза. Аналогичное устройство имеют и окуляры телескопов.
Оказывается, можно, подбирая кривизну линз и сорт их стекла, добиться того, чтобы объектив рефрактора практически не давал сферической аберрации. Полностью же уничтожить хроматическую аберрацию таким способом невозможно — обязательно остается некоторая, правда, однотонная (обычно голубоватая) окрашенность изображений.
Рефлекторы
Отсюда ясно, с какими огромными трудностями связана постройка крупных рефлекторов. Не легче создавать и крупные телескопы-рефракторы. Поэтому уже давно назрела необходимость в новых системах телескопов, которые при сравнительно небольших размерах обладали бы высокими оптическими качествами. Такие телескопы, названные менисковыми, были изобретены еще в 1941 г. членом-корреспондентом АН СССР Д.Д.Максутовым. В настоящее время менисковые телескопы широко используются как у нас, так и за рубежом.
Лучи света, идущие от светила, прежде чем попасть на главное вогнутое зеркало телескопа, проходят через тонкую выпукло-вогнутую рассеивающую линзу — мениск. Отразившись от главного зеркала, лучи снова возвращаются к мениску, центральная часть внутренней поверхности которого посеребрена и, таким образом, выполняет роль выпуклого зеркала. Отразившись от него, лучи попадают в окуляр, вставленный в отверстие главного зеркала. Преимущества менискового телескопа весьма существенны.
Во-первых (и в этом состоит главная идея менискового телескопа), форму поверхностей мениска можно выбрать так, что при сферической поверхности главного зеркала сферическая аберрация мениска полностью скомпенсирует (то есть как бы уничтожит) сферическую аберрацию зеркала. Хроматическая же аберрация из-за тонкости мениска и его малой искривленности практически отсутствует. Таким образом, менисковый телескоп дает четкие, неокрашенные высококачественные изображения.
Во-вторых, при изготовлении оптической части менисковых телескопов приходится затрачивать гораздо меньше усилий, чем при создании обычных рефлекторов. Причина в том, что не только у главного зеркала, но и у мениска поверхности имеют сферическую форму, а добиться такой формы технически несравненно легче, чем параболической.
В-третьих, луч света, попав в менисковый телескоп, дважды меняет свое направление. Эта особенность движения луча сильно сокращает длину инструмента и делает менисковый телескоп компактным, удобным в обращении.
Наконец, в-четвертых, мениск герметически закупоривает трубу телескопа. Это предохраняет главное зеркало от попадания влаги, пыли, что, конечно, удлиняет сроки его пригодности для наблюдений.
Школьный менисковый телескоп очень компактен — длина его тубуса (трубы) 25 см, а высота телескопа вместе со штативом 40 см. Проницающая его способность достаточно велика — в школьный менисковый телескоп доступны звезды до 11-й зв. величины. Более высока, чем у малого школьного рефрактора, его разрешающая способность — около двух секунд дуги.