Чтение онлайн

на главную

Жанры

Солнечная система (Астрономия и астрофизика)
Шрифт:

Встречи Земли с крупными метеороидами создают опасность для людей и всего, что ими создано, а также для земной флоры и фауны. Более того, катастрофические события, подобные Тунгусскому, могут создать угрозу всей человеческой цивилизации. Конечно, это может произойти только при столкновении с достаточно большим телом, типа астероида или ядра кометы. Земная поверхность хранит следы таких столкновений в виде кратеров больших размеров — так называемых астроблем (т.е. «звездных ран»). Их уже обнаружено более 230. Диаметры самых крупных из них превышают 200 км.

Один из хорошо сохранившихся кратеров (по причине его относительной молодости) — так называемый Метеорный кратер, или Каньон дьявола, расположенный на плато Колорадо (1700 м. над уровнем моря) в северной части штата Аризона, США. В 1906 г. горный инженер Дэниел Берринджер (D.М. Barringer, 1860—1929) доказал,

что этот кратер диаметром 1,2 км. имеет ударное происхождение: Берринджер обнаружил фрагменты метеорита, рассеянные в радиусе 5 км. вокруг кратера. При дальнейших исследованиях было собрано около 12 т. космического вещества и установлено, что кратер возник при падении железо-никелевого метеорита размером около 40 м. и массой около 300 тыс. тонн, летевшего со скоростью около 12 км/с. Это удалось установить в 2005 г. путем математического моделирования процесса образования кратера. Расчет показал, что метеорит начал разрушаться на высоте около 5 км., сплющился и превратился в «блин» диаметром 200 м. В воздушной ударной волне рассеялась энергия, эквивалентная взрыву 6,5 мегатонн ТНТ, и еще 2,5 Мт. выделилось при ударе о поверхность. Таким образом, полная энергия была почти такой же, как у Тунгусского метеорита, но результат оказался совсем иной!

Из-за атмосферной и водной эрозии на Земле практически не осталось древних кратеров размером менее 1 км. Даже гигантские кратеры диаметром в сотни километров исчезают примерно за 100 млн. лет. Известный пример — кратер Чиксулуб (Chicxulub) на п-ове Юкатан (Мексика). Его диаметр около 180 км.; он образовался 65 млн. лет от падения астероида размером около 10 км. (энергия взрыва составили 5x1023 Дж, или 1014 тонн ТНТ), но следы этого происшествия, стоившего жизни динозаврам, уже практически исчезли.

Значительно лучше и дольше сохраняются метеоритные кратеры на Луне, Меркурии, Марсе и других планетах и спутниках с разреженной атмосферой или вообще без нее. Как показывают расчеты, в течение первых 100 млн. лет после своего образования Земля вычерпала практически все твердое вещество, двигавшееся в окрестности ее орбиты. Однако Земля и сейчас продолжает встречать на своем пути пыль, камни и даже глыбы километровых размеров. Откуда же они берутся? Мы ответим на этот вопрос, но сначала познакомимся с составом и структурой метеоритного вещества.

Состав и строение метеоритного вещества

Среди падающего на Землю метеоритного вещества по количеству падений примерно 92% составляют каменные метеориты, 6% железные и 2% железо-каменные (а по общей массе, соответственно, 85, 10 и 5%).

Атмосфера служит первым «фильтром», сквозь который должно пройти метеоритное вещество. Чем более оно тугоплавкое и прочное, тем больше у него шансов попасть на земную поверхность. Еще одним фильтром можно считать селекцию метеоритов при их находках. Чем сильнее метеорит выделяется на фоне земной поверхности, тем легче его найти. Тридцать лет назад японские ученые обнаружили, что лучшим местом для поиска метеоритов является Антарктида. Во-первых, метеорит легко обнаружить на фоне белого льда. Во-вторых, во льдах они лучше сохраняются. Упавшие в других местах Земли метеориты подвергаются действию атмосферного выветривания, водной эрозии и прочих разрушающих факторов; поэтому они либо разлагаются, либо оказываются погребенными.

Основными компонентами метеоритного вещества, достигающего поверхности Земли, являются железо-магнезиальные силикаты и никелистое железо. Иногда бывают обильны и сульфиды железа (троилит и др.). Распространенные минералы, входящие в силикаты метеоритного вещества, — это оливины (Fe, Mg)2SiО4 (от фаялита Fe2SiО4 до форстерита Mg2SiО4) и пироксены (Fe, Mg)SiО3 (от ферросилита FeSiО3 до энстатита MgSiO3) разного состава. Они присутствуют в силикатах либо в виде мелких кристаллов или стекла, либо как смесь с разными пропорциями. На сегодняшний день в метеоритном веществе обнаружено около 300 разных минералов. И хотя их количество в процессе исследований новых метеоритов постепенно увеличивается, но все равно более чем на порядок уступает числу известных земных минералов.

Хондриты

Наиболее

многочисленные каменные метеориты делят на две группы: хондриты и ахондриты. Хондриты названы так из-за наличия необычных светлых образований сферической или эллиптической формы — хондр, включенных в более темное вещество — матрицу. Хондры можно видеть на поверхности разлома метеорита, но лучше всего они заметны на полированной поверхности его распила. Размер хондр бывает от микроскопических до сантиметровых. Иногда они занимают до 50% объема метеорита. Хондры и матрица практически не различаются по составу и состоят в основном из мелкокристаллических железо-магнезиальных силикатов и стекол. Но структура хондр в основном кристаллическая. На этом основании некоторые специалисты считают, что хондры кристаллизовались из расплава. Содержание никелистого железа в хондритах не превышает 30%, и присутствует оно в виде мелких частиц неправильной или сферической формы. В целом вещество хондритов сравнительно плотное (2,0—3,7 г/см3), но хрупкое. Достаточно небольшого усилия для того, чтобы раскрошить в руках хондритовый метеорит. Удивительно, что хондры до сих пор обнаружены только в метеоритах. Их происхождение пока остается загадкой, поскольку неизвестны механизмы их возникновения.

Другой важной особенностью хондритов является их предельно простой элементный состав. Если не учитывать самые летучие элементы (Н, Не, О и некоторые другие), то получается, что состав хондритов очень близок к элементному составу Солнца. Причем такая близость прослеживается не только по основным элементам, но и по примесным, также служащим важными индикаторами. Примесные элементы делят на три группы: литофильные (Se, Sr, Rb, Ва, Се, Cs, Th, U и др.), халькофильные (Сu, Zn, Sn, Pb, Ag, Hg, Cd, In и др.) и сидерофильные (Ga, Ge, Ru, Pt, Pd, Os, Ir, Rh и др.); они демонстрируют сродство с минералами, богатыми кислородом, серой и железом соответственно. В частности, горные породы Земли, прошедшие магматическую дифференциацию, содержат в основном литофильные примесные элементы. Халькофильные элементы встречаются на земной поверхности только в ограниченных областях рудных месторождений, а сидерофильные практически отсутствуют. Оказалось, что в хондритовых метеоритах примесные элементы разных групп присутствуют в тех же пропорциях (с незначительными вариациями), что и на Солнце. Это означает, что хондриты образовались из вещества солнечного состава и не проходили дифференциацию. В то же время, очевидно, что они эпизодически подвергались нагреванию, хотя и не очень сильному, поэтому в них произошли некоторые структурные и минералогические изменения, называемые тепловым метаморфизмом.

Хондриты четко делятся на три больших класса по форме содержания железа, точнее по степени его окисленности. Хондритам этих классов дали следующие названия и обозначения: энстатитовые (Е), обыкновенные (О) и углистые (С). В том же порядке в них увеличивается содержание окисленного (двух- и трехвалентного) железа. Все хондриты поделены на шесть петрологических типов, в которых постепенно усиливаются структурные и минералогические проявления теплового метаморфизма (от 1-го к 6-му типу).

Углистые хондриты. Углистые хондриты (обозначаемые буквой «С», от англ. carbonaceous, углистый) — самые темные, чем и оправдывают свое название. Они содержат много железа, но оно почти целиком находится в связанном состоянии в силикатах. Темную окраску углистым хондритам в основном придает минерал магнетит (Fе3O4), а также небольшие количества графита, сажи и органических соединений. Эти метеориты содержат также значительную долю водосодержащих минералов или гидросиликатов (серпентин, хлорит, монтмориллонит и ряд других).

Дж. Вассон предложил в 1970-х гг. разделить углистые хондриты на четыре группы (CI, СМ, СО и CV) на основании постепенного изменения их свойств. В каждой группе есть типичный, эталонный метеорит, первая буква имени которого добавляется к индексу «С» при обозначении группы. Типичными представителями в упомянутых группах являются метеориты Ivuna, Мигеи (найден на Украине, в Николаевской обл.), Ornans и Vigarano. Несколько раньше, в 1956 г., Г. Виик предложил деление углистых хондритов на три группы (CI, СII и CIII), упоминания о которых можно иногда встретить в литературе. Группы Вассона CI и СМ полностью соответствуют группам CI и СII Виика, а группы СО и CV можно рассматривать как составляющие группы CIII.

Поделиться:
Популярные книги

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4